当前搜索:

阅读小结:Large-Margin Softmax Loss for Convolutional Neural Networks

徐博最近一直在看我博客,肯定是想看我什么时候不更新,然后好嘲笑我。当然,不排除徐博已经爱上我的可能。 What: 改进SoftmaxLoss,显式的控制类内的距离,(不让 已经对的样本score太高,影响训练) 可以防止过拟合。 回顾SoftmaxLoss: 1. Softmax 就是...
阅读(1254) 评论(2)

周志华《机器学习》 读后感

书还是比较厚的,我会挑感兴趣的章节先更新。 以写小结和感想为主。(我也是机器学习入门,所以小结以感性理解为主。) 第四章 决策树 ☑️ ---------第四章 决策树 ----------- What 决策树 首先是一棵树 利用贪心法 每个中间节点 按照学习到的原则分隔 几波数据,(就是...
阅读(2801) 评论(1)

《造梦者》观后感

最近因为签证的事情待在家里,paper也在准备。 可就是没心思写paper,查related work、introduction讲故事 啥的 真的对一个不说英语的人来说很烦啊。 实验上还没有尽善尽美,所以心里很郁闷。 看了造梦者,然后发现马云爸爸果然是高瞻远瞩。 同时也是吃了好多苦...
阅读(4032) 评论(0)

设计心理学1_日常的设计 读后感

书很厚,我会一点点update,以感想和摘录书中。 《设计心理学1_日常的设计》 唐纳德.A.诺曼 著 ----------------第一章 日用品心理学---------------- 一开篇作者就通过玻璃门案例 和壶把/茶嘴同一侧的茶壶设计  指出:好的设计有两个重要特征:可视性(...
阅读(2279) 评论(0)

阅读小结:InfoGAN:Interpretable Representation Learning by Information Maximising Generative Adversarial

之前GAN中都没有加入分类信息,都是耍流氓啊。用原始maxD的时候,G学到的容易收敛到一个固定图像。 而用feature matching的话,相同向量可能每次match的都不同,这怎么regression啊,摔  (也可能我是用姿势不对,但有多类的feature matching不靠谱啊) ...
阅读(4182) 评论(7)

阅读小结:Stacked Hourglass Networks for Human Pose Estimation

arXiv: https://arxiv.org/pdf/1603.06937v2.pdf github: https://github.com/anewell/pose-hg-train What: 人体关键点预测,输入人体图像输出几个关键点。 使用了反复迭代bottom down/  ...
阅读(4791) 评论(2)

阅读小结:Improved Techniques for training GANS

github地址:https://github.com/openai/improved-gan/ What: 提出了对于GANs新的结构和训练过程。主要focus在两个应用:半监督学习 和  更好的图像产生。 对于G,不要求一个和test data和像的模型,也不要求不使用label。 实验中...
阅读(4708) 评论(9)
    个人资料
    持之以恒
    等级:
    访问量: 9万+
    积分: 1300
    排名: 3万+
    关于我