TLDR: 神经肽作为调控行为与生理功能的重要分子,其在脑中的分布和作用长期以来都未得到全面解析。本文通过基因转录数据的多层次分析,探讨了38种神经肽受体的全脑分布及其与功能连接、行为解码及进化轨迹的关联。研究结果揭示了神经肽受体在皮层与皮层下区域的显著梯度分布,以及其与代谢型神经递质受体在信号传递中的共定位关系。此外,神经肽信号被证明能够显著增强脑区的结构-功能耦合,并表现出从感觉-认知到奖赏-身体功能的特化梯度。最后,通过进化分析,研究展示了神经肽系统在哺乳动物新皮层进化中的关键作用。
doi:https://doi.org/10.1101/2024.12.11.627947
研究背景
神经肽(Neuropeptides)是神经系统中一类重要的信号分子,参与从情绪调节到代谢控制的多种功能。它是由一小段氨基酸序列组成的短链肽,通常由更大的前体蛋白质(propeptide)切割而成。这种结构使得神经肽可以作为一种重要的分子信号传递者,与大脑和外周系统的多种受体相互作用,从而参与多种生理和行为调节过程。
尽管过去几十年的研究揭示了部分神经肽的作用,比如催产素(Oxytocin)与社会行为的关系,但对于它们在大脑中更大范围的分布和功能依然知之甚少。该研究试图通过基因转录数据构建一个全脑神经肽受体的分布图谱,从分子、细胞到功能层面,全面探讨神经肽的潜在作用。
具体分析和结果
分析1:基于基因表达的神经肽受体空间分布
研究者利用 Allen Human Brain Atlas (AHBA) 的基因转录数据,筛选出38种神经肽受体的表达水平,采用质量控制措施去除噪声干扰后,将这些数据投射到大脑皮层和皮质下区域,生成神经肽受体的分布图谱。具体包括:
大概包括以下神经肽家族:
·胰高血糖素/分泌素家族 (Glucagon/Secretin Family),调控代谢、胃肠道功能和激素分泌,代表基因:
ADCYAP1R1,ADCYAP受体1型
GLP2R,胰高血糖素样肽2型受体
GIPR,胃抑制肽受体
VIPR1, VIPR2,血管活性肠肽受体1与2
·脂肪素家族 (Adipose Family),调节能量代谢与脂肪信号
ADIPOR2,脂联素受体2,代表基因:
LEPR,瘦素受体
·内皮素家族 (Endothelin Family),调控血管张力与神经活动,代表基因:
EDNRA,内皮素受体A
EDNRB,内皮素受体B
·加拉宁家族 (Galanin Family),调节情绪与认知功能,代表基因:
GALR1,加拉宁受体1
GALR2,加拉宁受体2
·催产素/加压素家族 (Oxytocin/Vasopressin Family),调控亲密关系、社会行为及水盐平衡,代表基因:
OXTR,催产素受体
AVPR1A, AVPR1B,加压素受体1A和1B
·阿片家族 (Opioid Family),参与疼痛管理、奖赏与成瘾机制,代表基因:
OPRM1,μ-阿片受体
OPRK1,κ-阿片受体
·抑制素家族 (Somatostatin Family),抑制神经活动与分泌功能,代表基因:
SSTR1,生长抑素受体1
SSTR2,生长抑素受体2
·紧张素/凯宁家族 (Kinin/Tensin Family),调控神经递质释放和血管舒张,代表基因:
BDKRB2,缓激肽受体B2
NTSR1,紧张素受体1
NTSR2,紧张素受体2
SORT1,Sortilin 1
·F-/Y-酰胺家族 (F-/Y-Amide Family),调控食欲、代谢和情绪行为,代表基因:
NPY1R,神经肽Y受体1
NPY2R,神经肽Y受体2
NPY5R,神经肽Y受体5
·胆囊收缩素家族 (CCK/Gastrin Family),调节食物消化与饱腹感信号,代表基因:
CCKAR,胆囊收缩素A型受体
CCKBR,胆囊收缩素B型受体
·降钙素家族 (Calcitonin Family),调节骨骼代谢与神经活动,代表基因:
CALCR,降钙素受体
TACR2,速激肽受体2
图1展示了14个神经肽家族的代表性受体在皮层的分布图。图中橙色表示高表达区域,绿色表示低表达区域。
图2. (a) 各个神经肽受体在皮层、下丘脑和皮质下区域的平均基因表达。皮层受体表达进一步按照功能网络(如视觉网络、躯体运动网络、背侧注意网络、腹侧注意网络、前额顶网络、默认模式网络和边缘网络)进行分类。(b) 神经肽受体在皮层、皮质下和下丘脑区域的基因表达的箱线图。
结果显示,不同神经肽受体在大脑中的分布存在显著的皮层-皮层下梯度。例如,催产素受体(OXTR)在边缘系统(如海马和杏仁核)高表达,与社会行为和情绪调节相关;而神经肽Y受体(NPY1R)在下丘脑区域高度分布,与食欲调控和能量代谢密切相关。这种皮层-皮层下的分布模式可能反映了神经肽系统在大脑功能中的区域特异性。
分析2:神经肽受体与神经递质受体的共定位分析
在此之前需要了解一下神经肽的主要特点:首先,神经肽属于慢作用信号分子(slow-acting),通过与代谢型受体(G蛋白耦合型受体)结合,调控神经活动。这种信号传递尽管较慢,但持续时间更长,具有显著的调节功能。此外,神经肽还表现出弥散作用(diffuse signaling),与传统神经递质局限于突触间的作用不同,神经肽信号能够影响更大范围的神经网络,提供更广泛的生理调控。作者也在图中展示了其Diffusive transmission的特点,见图3a。神经肽在功能上常表现出多样性。它们常与其他神经递质(如谷氨酸、GABA)共同释放,在神经网络中起到辅助和调节的作用。这种共存机制使得神经肽能够在多层次的神经活动中起到重要的调控作用,并参与复杂的行为模式。
分析2中,研究者分析了神经肽受体与代谢型神经递质受体(如GABA、NMDA)的空间共定位关系,以探讨神经肽是否在慢节律信号调控中与传统神经递质系统协同作用。分析发现,大多数神经肽受体与代谢型神经递质受体共定位,尤其是在皮层区域,如VIP受体(血管活性肠肽受体1)与抑制性中间神经元的GABA受体分布高度一致。这种共定位关系表明,神经肽可能通过调节代谢型神经递质的信号传递,对脑功能的慢节律调控产生重要作用。
图3.(a) 示意图展示了突触化学信号传递的不同类型,包括直接的离子型(ionotropic)和代谢型(metabotropic)神经递质信号,以及弥散性神经肽信号。神经肽信号因其弥散特性,能够作用于邻近的多个细胞,与传统神经递质的定向释放模式有所不同。 (b) 神经肽受体的空间分布与16种神经递质受体的密度(通过PET影像测量)进行线性组合分析,柱状图显示每个神经肽受体分布可被神经递质受体密度预测的调整R2 值。热图颜色表示各神经递质受体对神经肽受体分布的相对贡献强度。(c) 总体共定位分析表明,神经肽受体与神经递质受体的平均空间相关性较高,尤其是代谢型神经递质受体与神经肽受体的共定位显著高于离子型受体。(d) 散点图展示了基因表达数据估算的受体密度与PET影像测得的 μ-阿片受体(MOR)和 κ-阿片受体(KOR)密度之间的空间相关性。结果显示两者均具有显著的正相关,支持基因表达数据作为功能性分布代理的合理性。btw, 印象中他们那个对比受体基因表达 vs. PET的文章结果似乎是说别用基因表达数据,PET更好。
分析3:神经肽信号与功能连接的关系
通过整合静息态功能磁共振成像(fMRI)和脑磁图(MEG)数据,研究者探索了神经肽受体分布与功能连接(functional connectivity)的关系,特别是其对结构-功能耦合的影响。结果显示,某些神经肽家族(如阿片类和内皮素)显著增强了结构连接和功能连接的耦合。例如,阿片类受体与BOLD信号的低频波动之间表现出强相关性,而内皮素受体对θ节律的跨区域连接有显著贡献。
图4.(a) 神经肽配体前体基因在皮层、下丘脑和皮质下区域的平均表达水平。结果显示,下丘脑的配体表达显著高于其他区域,这与下丘脑作为神经肽信号枢纽的功能一致。(b) 使用静息态fMRI计算的下丘脑种子点全脑功能连接图,并与神经肽受体分布图进行空间相关性分析。条形图显示了下丘脑功能连接与神经肽受体分布之间的空间相关性,其中显著性通过两种方法评估:(1)基因随机对照组,匹配空间自相关性和值分布;(2)保留空间自相关的随机分布。部分神经肽家族(如内皮素、阿片类和生长抑素)表现出显著相关性。(c) 神经肽信号网络是通过计算不同区域间的受体-配体密度乘积生成的,并用扩散加权MRI(dMRI)生成的结构连接模板进行掩码处理。功能连接使用静息态fMRI(血流动力学连接)和源分辨静息态MEG(电生理连接)估算。结构-功能耦合模型包括两种条件:(1)仅使用结构连接(“无注释”);(2)结构连接加神经肽注释。图中显示了每个神经肽受体-配体对在θ频段(5-7 Hz)的结构-功能耦合增强幅度。
分析4:行为功能的元分析解码
利用Neurosynth工具,研究者对神经肽受体分布进行了行为功能的元分析解码,试图关联神经肽的空间分布与认知和行为领域的功能。解码结果显示,神经肽受体的功能梯度从感觉-认知功能(如视觉注意)到奖赏和身体功能(如进食和应激)。例如,视觉皮层中的VIP受体分布与视觉注意相关,而皮质下区域的阿片类受体与奖赏和疼痛调节相关。
图5.(a) 使用偏最小二乘相关(Partial Least Squares Correlation, PLSC)方法,将38种神经肽受体的分布图与Neurosynth元分析图谱中125个认知术语(如注意、记忆、奖赏等)进行关联分析。分析识别出一个显著的潜变量,该潜变量反映了受体分布与认知功能术语之间的主要关联模式。图中散点图和脑表面渲染图分别展示了术语分数与受体分数的分布,揭示了神经肽受体空间分布与认知功能领域的关系。(b) 第一个潜变量的受体负载和术语负载。负载值表示受体或术语对潜变量的贡献大小,误差条为基于自助法(bootstrap)估算的95%置信区间。结果显示,不同神经肽受体与特定认知领域的关联强度存在显著差异,进一步揭示了神经肽系统在脑功能调控中的特化作用。
分析5:进化视角下的神经肽分析 (超纲内容)
通过比较哺乳动物与其他物种的基因数据,研究者分析了神经肽系统的进化模式,尤其是与新皮层功能相关的分子特化。分析表明,神经肽系统在哺乳动物的进化过程中经历了显著的正向选择,尤其是与认知功能相关的皮层受体(如催产素受体和胆囊收缩素受体),可能与新皮层的出现密切相关。
图6. (a) 展示了人类进化的系统发生谱系,包括13个物种,每个物种代表人类进化历史中的特定阶段(例如最早的脊椎动物、最早的四足动物等)。这一谱系反映了神经肽信号系统在进化过程中的重要节点。(b) 神经肽受体的氨基酸序列在进化中的相似性。纵轴显示了不同物种神经肽受体氨基酸序列的相似性,表明这些受体在系统发生过程中既具有保守性,也表现出适应性的差异。(c) 基于密码子的受体基因替代率分析。按照受体类型分层,包括离子型受体、代谢型受体和神经肽受体。箱线图展示了替代率的中位值和四分位范围(25%和75%),揭示了不同类型受体在进化过程中受选择压力的差异。(d) 不同类型神经肽和神经递质受体的替代率中位值。数据经过对数转换,清晰呈现了不同受体类型替代率的动态变化。补充表S2详细列出了aBSREL模型的统计估计值和拟合参数。
如果说前四个分析看起来就是新瓶装旧酒的话,这个分析可能是属于进化生物学(Evolutionary Biology)或者分子演化(Molecular evolution)的范畴,具体的分析大概是这样。。。(Step1和Step2能看懂个大概)
Step1:构建了一个可靠的系统发生谱系,涵盖从早期脊椎动物到人类的进化过程。为此,研究者选取了13个代表性物种,如海洋七鳃鳗、斑马鱼、家鼠和黑猩猩,这些物种分别位于进化过程中关键的节点,例如最早的脊椎动物、四足动物和哺乳动物。这些数据来源于公开的TimeTree数据库,并经过标准化处理以确保适用于进一步的进化分析。
Step2:对神经肽受体和神经递质受体基因的采集与比对进行了详细分析,旨在比较这些基因在不同物种中的演化轨迹。研究从人类基因组中选取了已知的神经肽受体基因(如OPRM1和OXTR)以及神经递质受体基因(如GRIA1和DRD2)。随后,从NCBI数据库中下载了这些基因在13个物种中的同源序列,包括氨基酸序列和核酸序列。研究利用MUSCLE软件对氨基酸序列进行多序列比对,然后通过PAL2NAL工具将比对结果转换为保留密码子结构的核酸比对,以确保在进化分析中数据的准确性。
Step3: 在基因替代率分析中,研究评估了这些受体基因在进化中的选择压力,以检测基因是否经历了正向选择(促进适应性变异)或净化选择(维持保守性)。通过使用aBSREL模型(Adaptive Branch-Site Random Effects Likelihood),研究能够识别进化树中特定分支的正向选择事件。进一步计算每个基因在不同分支上的非同义替代(dN)与同义替代(dS)的比率(dN/dS或ω值),并通过箱线图和中位值对替代率进行分层比较,依据受体类型(离子型、代谢型或神经肽受体)展示统计结果。
Step4: 将替代率与氨基酸序列相似性结合,揭示了受体基因在进化中的变化模式。
结果显示,神经肽受体比离子型受体经历了更长期的选择压力,尤其是在哺乳动物出现之后。此外,早期分支(如鱼类)中的神经肽受体基因更倾向于分布在皮质下区域,而后期分支(如灵长类)则更多地分布于皮层区域。这些发现表明,神经肽受体的进化可能与哺乳动物新皮层的出现以及更复杂的认知功能发展密切相关。
Comments
hmm... 🤔
研究主要依赖AHBA提供的基因转录数据,这确实为大规模绘制神经肽受体的分布图谱提供了可能。然而,基因表达数据本质上只能间接反映蛋白质的分布水平,而神经肽受体的实际功能活性主要取决于蛋白质的密度与活性,这两者之间并非总是一一对应。说实话,文章的标题就挺鸡贼的,Mapping neuropeptide signaling in the human brain,“神经肽信号”这个词本身就很模糊。信号这个词根本没有明确指向具体的测量内容,可能只是间接的代理数据(proxy)而已。用“信号”这个词,既可以让人觉得高深莫测,又能避开直接说明是基因表达或其他间接数据的事实,算是一种巧妙的模糊处理。
这种数据的间接性可能导致对某些脑区的功能显著性评估出现偏差——某些区域的功能作用可能被低估,而另一些区域可能被高估。在缺乏直接验证和更高分辨率数据的情况下,基于这些数据进行分析是否真正能够支持其得出的广泛结论,不禁让我产生疑问:这是否又是一次以复杂数据为核心的“精美数据叙事”?🍋好吧,我也想试试整点精美的数据叙事,可惜水平和思路都跟不上,只能干瞪眼,然后顺手点了一个赞。