- 博客(13)
- 资源 (8)
- 收藏
- 关注
原创 二维拉普拉斯方程的极坐标形式
https://www.zhihu.com/question/29096466二维拉普拉斯方程的极坐标形式参考文章Cauchy-Riemann方程的极坐标形式(翻译)[拉普拉斯方程极坐标形式是怎么推导出来的啊? - 五光十色的白的回答 - 知乎](https://www.zhihu.com/question/29096466/answer/482929251)极坐标形式复函数可微的Cauchy-Riemann条件功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮.
2022-03-10 12:45:53 4918 1
翻译 Cauchy-Riemann方程的极坐标形式(翻译)
https://users.math.msu.edu/users/shapiro/Teaching/classes/425/crpolar.pdfCauchy-Riemann方程的极坐标形式极坐标形式STEP ISTEP IISTEP IIISUMMARY极坐标形式假设复函数fff在复平面上的一点z0z_0z0处可微。假定z0≠0,z=reiθz_0 \neq0,z=re^{i\theta}z0=0,z=reiθ,将复函数fff的实部和虚部表示成rrr和θ\thetaθ的二元函数:f(r.
2020-08-05 16:52:11 6090 3
原创 FFT解泊松方程
Pérez, Patrick, Gangnet M , Blake A . Poisson image editing[J]. ACM Transactions on Graphics, 2003, 22(3):313.上一篇:泊松融合笔记待求解的问题Δf=∇⋅v(x,y)=div(v(x,y)),∀(x,y)∈Ω,withf∣R∖Ω=f∗∣R∖Ω\Delta f=\nabla\cd...
2019-07-26 01:36:34 7440 5
原创 泊松融合笔记
参考书籍张恭庆. 变分学讲义[M]. 北京:高等教育出版社, 2011.Pérez, Patrick, Gangnet M , Blake A . Poisson image editing[J]. ACM Transactions on Graphics, 2003, 22(3):313.使用的引理**引理2.1 (du Bois-Reymond)**若ψ∈C[t0,t1]\ps...
2019-07-26 01:35:57 822
原创 伪逆总结
参考书籍方保镕, 周继东, 李医民. 矩阵论.第2版[M]. 清华大学出版社, 2013.7714Convex optimization[M]. 2013.加号逆的定义矩阵A∈Rm×n\textbf{A} \in R^{m \times n}A∈Rm×n,若存在G∈Rm×n\textbf{G} \in R^{m \times n}G∈Rm×n满足:(1) AGA=A\textbf{...
2019-03-08 19:25:00 5862
原创 投影仪标定过程总结
参考论文:http://research.microsoft.com/en-us/um/people/zhang/Papers/TR98-71.pdf定义假设世界坐标系其次坐标为(X,Y,Z,1)(X,Y,Z,1)(X,Y,Z,1),相机坐标系其次坐标为(Xc,Yc,Zc,1)(X_c,Y_c,Z_c,1)(Xc,Yc,Zc,1),相机成像平面像素齐次坐标为(xc,yc,1)(x_...
2018-10-26 13:13:40 6806 7
原创 小孔模型及畸变总结
参考博客:最详细、最完整的相机标定讲解定义(xc,yc,zc)(x_c,y_c,z_c)(xc,yc,zc)表示相机坐标系下的坐标,(x,y)(x,y)(x,y)表示成像平面坐标系坐标,(u,v)(u,v)(u,v)表示像素坐标,(u0,v0)(u_0,v_0)(u0,v0)表示像素中心坐标,每个像素占1k\frac{1}{k}k1x1l\frac{1}{l}l1物理坐标大小...
2018-10-21 00:59:14 1228
原创 证明本征矩阵的一个奇异值为0,另外两个奇异值相等
该题目为《计算机视觉----一种现代方法》第七章习题1证明:令,其中,是非零向量构造的反对称矩阵,是正交矩阵,进行如下推导:,将其展开验证可知该矩阵的秩为2。,根据同济大学版线性代数第五章定理7得0特征值为单根。因为A可以相似对角化,所以必须有3个线性无关的特征向量,0特征值对应一个特征向量,还需要两个特征向量,所以存在另一个特征值(因为A为奇异矩阵,所以不能有3个特征值)为二重根...
2018-09-08 22:38:22 3036 1
原创 凸函数和上境图
上一篇:凸函数总结函数的图像定义为,它是空间的一个子集。函数的上境图定义为,它也是空间的一个子集。定理函数是凸函数当且仅当是凸集。证明:(必要性)显然成立,证明省略。(充分性)假设,显然有,又由于是凸集所以有即得成立,由于的任意性可知是凸函数。亚图,类似上述定理有函数是凹函数当且仅当其亚图是凸集。...
2018-07-23 16:06:34 11980 5
原创 五面体的体积
如图所示,五面体可以分割成三个四面体,四面体ABCD,四面体BCDF,四面体BDEF。每个四面体的四个顶点的坐标已知后就可以求得四面体体积,再将三个四面体体积叠加即得到五面体体积代码下载:https://github.com/lbc3402785/Pentahedron.git...
2018-07-23 09:59:01 8470
原创 凸函数总结
定义是凸的,如果是凸集,且对于任意和任意,有 定理1 在定义域内可微,下列条件等价1.是凸函数2.对于任意,下式成立3.函数是凸函数(其定义域为)12证明:记,由凸函数的定义得即两边除以t令即得23令,由于是凸函数,所以有 即得假设,由于凸集的性质显然有由2得到即,所以g(t...
2018-07-23 00:13:43 6424
原创 三维平面的一种拟合方法
第一次写博客,都是在word编辑的,粘贴不上来,只能转成图片格式。 代码下载:https://github.com/lbc3402785/Garfield
2018-01-28 18:28:02 2925
复旦陈传璋《数学分析》
2017-12-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人