Motion-Based Multiple Object Tracking

%% Motion-Based Multiple Object Tracking
% This example shows how to perform automatic detection and motion-based
% tracking of moving objects in a video from a stationary camera.
%
%   Copyright 2014 The MathWorks, Inc.

%%
% Detection of moving objects and motion-based tracking are important 
% components of many computer vision applications, including activity
% recognition, traffic monitoring, and automotive safety.  The problem of
% motion-based object tracking can be divided into two parts:
%
% # detecting moving objects in each frame 
% # associating the detections corresponding to the same object over time
%
% The detection of moving objects uses a background subtraction algorithm
% based on Gaussian mixture models. Morphological operations are applied to
% the resulting foreground mask to eliminate noise. Finally, blob analysis
% detects groups of connected pixels, which are likely to correspond to
% moving objects. 
%
% The association of detections to the same object is based solely on
% motion. The motion of each track is estimated by a Kalman filter. The
% filter is used to predict the track's location in each frame, and
% determine the likelihood of each detection being assigned to each 
% track.
%
% Track maintenance becomes an important aspect of this example. In any
% given frame, some detections may be assigned to tracks, while other
% detections and tracks may remain unassigned.The assigned tracks are
% updated using the corresponding detections. The unassigned tracks are 
% marked invisible. An unassigned detection begins a new track. 
%
% Each track keeps count of the number of consecutive frames, where it
% remained unassigned. If the count exceeds a specified threshold, the
% example assumes that the object left the field of view and it deletes the
% track.  
%
% For more information please see
% <matlab:helpview(fullfile(docroot,'toolbox','vision','vision.map'),'multipleObjectTracking') Multiple Object Tracking>.
%
% This example is a function with the main body at the top and helper 
% routines in the form of 
% <matlab:helpview(fullfile(docroot,'toolbox','matlab','matlab_prog','matlab_prog.map'),'nested_functions') nested functions> 
% below.

function multiObjectTracking()

% Create System objects used for reading video, detecting moving objects,
% and displaying the results.
obj = setupSystemObjects();

tracks = initializeTracks(); % Create an empty array of tracks.

nextId = 1; % ID of the next track

% Detect moving objects, and track them across video frames.
while ~isDone(obj.reader)
    frame = readFrame();
    [centroids, bboxes, mask] = detectObjects(frame);
    predictNewLocationsOfTracks();
    [assignments, unassignedTracks, unassignedDetections] = ...
        detectionToTrackAssignment();
    
    updateAssignedTracks();
    updateUnassignedTracks();
    deleteLostTracks();
    createNewTracks();
    
    displayTrackingResults();
end


%% Create System Objects
% Create System objects used for reading the video frames, detecting
% foreground objects, and displaying results.

    function obj = setupSystemObjects()
        % Initialize Video I/O
        % Create objects for reading a video from a file, drawing the tracked
        % objects in each frame, and playing the video.
        
        % Create a video file reader.
        obj.reader = vision.VideoFileReader('atrium.avi');
        
        % Create two video players, one to display the video,
        % and one to display the foreground mask.
        obj.videoPlayer = vision.VideoPlayer('Position', [20, 400, 700, 400]);
        obj.maskPlayer = vision.VideoPlayer('Position', [740, 400, 700, 400]);
        
        % Create System objects for foreground detection and blob analysis
        
        % The foreground detector is used to segment moving objects from
        % the background. It outputs a binary mask, where the pixel value
        % of 1 corresponds to the foreground and the value of 0 corresponds
        % to the background. 
        
        obj.detector = vision.ForegroundDetector('NumGaussians', 3, ...
            'NumTrainingFrames', 40, 'MinimumBackgroundRatio', 0.7);
        
        % Connected groups of foreground pixels are likely to correspond to moving
        % objects.  The blob analysis System object is used to find such groups
        % (called 'blobs' or 'connected components'), and compute their
        % characteristics, such as area, centroid, and the bounding box.
        
        obj.blobAnalyser = vision.BlobAnalysis('BoundingBoxOutputPort', true, ...
            'AreaOutputPort', true, 'CentroidOutputPort', true, ...
            'MinimumBlobArea', 400);
    end

%% Initialize Tracks
% The |initializeTracks| function creates an array of tracks, where each
% track is a structure representing a moving object in the video. The
% purpose of the structure is to maintain the state of a tracked object.
% The state consists of information used for detection to track assignment,
% track termination, and display. 
%
% The structure contains the following fields:
%
% * |id| :                  the integer ID of the track
% * |bbox| :                the current bounding box of the object; used
%                           for display
% * |kalmanFilter| :        a Kalman filter object used for motion-based
%                           tracking
% * |age| :                 the number of frames since the track was first
%                           detected
% * |totalVisibleCount| :   the total number of frames in which the track
%                           was detected (visible)
% * |consecutiveInvisibleCount| : the number of consecutive frames for 
%                                  which the track was not detected (invisible).
%
% Noisy detections tend to result in short-lived tracks. For this reason,
% the example only displays an object after it was tracked for some number
% of frames. This happens when |totalVisibleCount| exceeds a specified 
% threshold.    
%
% When no detections are associated with a track for several consecutive
% frames, the example assumes that the object has left the field of view 
% and deletes the track. This happens when |consecutiveInvisibleCount|
% exceeds a specified threshold. A track may also get deleted as noise if 
% it was tracked for a short time, and marked invisible for most of the of 
% the frames.        

    function tracks = initializeTracks()
        % create an empty array of tracks
        tracks = struct(...
            'id', {}, ...
            'bbox', {}, ...
            'kalmanFilter', {}, ...
            'age', {}, ...
            'totalVisibleCount', {}, ...
            'consecutiveInvisibleCount', {});
    end

%% Read a Video Frame
% Read the next video frame from the video file.
    function frame = readFrame()
        frame = obj.reader.step();
    end

%% Detect Objects
% The |detectObjects| function returns the centroids and the bounding boxes
% of the detected objects. It also returns the binary mask, which has the 
% same size as the input frame. Pixels with a value of 1 correspond to the
% foreground, and pixels with a value of 0 correspond to the background.   
%
% The function performs motion segmentation using the foreground detector. 
% It then performs morphological operations on the resulting binary mask to
% remove noisy pixels and to fill the holes in the remaining blobs.  

    function [centroids, bboxes, mask] = detectObjects(frame)
        
        % Detect foreground.
        mask = obj.detector.step(frame);
        
        % Apply morphological operations to remove noise and fill in holes.
        mask = imopen(mask, strel('rectangle', [3,3]));
        mask = imclose(mask, strel('rectangle', [15, 15])); 
        mask = imfill(mask, 'holes');
        
        % Perform blob analysis to find connected components.
        [~, centroids, bboxes] = obj.blobAnalyser.step(mask);
    end

%% Predict New Locations of Existing Tracks
% Use the Kalman filter to predict the centroid of each track in the
% current frame, and update its bounding box accordingly.

    function predictNewLocationsOfTracks()
        for i = 1:length(tracks)
            bbox = tracks(i).bbox;
            
            % Predict the current location of the track.
            predictedCentroid = predict(tracks(i).kalmanFilter);
            
            % Shift the bounding box so that its center is at 
            % the predicted location.
            predictedCentroid = int32(predictedCentroid) - bbox(3:4) / 2;
            tracks(i).bbox = [predictedCentroid, bbox(3:4)];
        end
    end

%% Assign Detections to Tracks
% Assigning object detections in the current frame to existing tracks is
% done by minimizing cost. The cost is defined as the negative
% log-likelihood of a detection corresponding to a track.  
%
% The algorithm involves two steps: 
%
% Step 1: Compute the cost of assigning every detection to each track using
% the |distance| method of the |vision.KalmanFilter| System object(TM). The 
% cost takes into account the Euclidean distance between the predicted
% centroid of the track and the centroid of the detection. It also includes
% the confidence of the prediction, which is maintained by the Kalman
% filter. The results are stored in an MxN matrix, where M is the number of
% tracks, and N is the number of detections.   
%
% Step 2: Solve the assignment problem represented by the cost matrix using
% the |assignDetectionsToTracks| function. The function takes the cost 
% matrix and the cost of not assigning any detections to a track.  
%
% The value for the cost of not assigning a detection to a track depends on
% the range of values returned by the |distance| method of the 
% |vision.KalmanFilter|. This value must be tuned experimentally. Setting 
% it too low increases the likelihood of creating a new track, and may
% result in track fragmentation. Setting it too high may result in a single 
% track corresponding to a series of separate moving objects.   
%
% The |assignDetectionsToTracks| function uses the Munkres' version of the
% Hungarian algorithm to compute an assignment which minimizes the total
% cost. It returns an M x 2 matrix containing the corresponding indices of
% assigned tracks and detections in its two columns. It also returns the
% indices of tracks and detections that remained unassigned. 

    function [assignments, unassignedTracks, unassignedDetections] = ...
            detectionToTrackAssignment()
        
        nTracks = length(tracks);
        nDetections = size(centroids, 1);
        
        % Compute the cost of assigning each detection to each track.
        cost = zeros(nTracks, nDetections);
        for i = 1:nTracks
            cost(i, :) = distance(tracks(i).kalmanFilter, centroids);
        end
        
        % Solve the assignment problem.
        costOfNonAssignment = 20;
        [assignments, unassignedTracks, unassignedDetections] = ...
            assignDetectionsToTracks(cost, costOfNonAssignment);
    end

%% Update Assigned Tracks
% The |updateAssignedTracks| function updates each assigned track with the
% corresponding detection. It calls the |correct| method of
% |vision.KalmanFilter| to correct the location estimate. Next, it stores
% the new bounding box, and increases the age of the track and the total
% visible count by 1. Finally, the function sets the invisible count to 0. 

    function updateAssignedTracks()
        numAssignedTracks = size(assignments, 1);
        for i = 1:numAssignedTracks
            trackIdx = assignments(i, 1);
            detectionIdx = assignments(i, 2);
            centroid = centroids(detectionIdx, :);
            bbox = bboxes(detectionIdx, :);
            
            % Correct the estimate of the object's location
            % using the new detection.
            correct(tracks(trackIdx).kalmanFilter, centroid);
            
            % Replace predicted bounding box with detected
            % bounding box.
            tracks(trackIdx).bbox = bbox;
            
            % Update track's age.
            tracks(trackIdx).age = tracks(trackIdx).age + 1;
            
            % Update visibility.
            tracks(trackIdx).totalVisibleCount = ...
                tracks(trackIdx).totalVisibleCount + 1;
            tracks(trackIdx).consecutiveInvisibleCount = 0;
        end
    end

%% Update Unassigned Tracks
% Mark each unassigned track as invisible, and increase its age by 1.

    function updateUnassignedTracks()
        for i = 1:length(unassignedTracks)
            ind = unassignedTracks(i);
            tracks(ind).age = tracks(ind).age + 1;
            tracks(ind).consecutiveInvisibleCount = ...
                tracks(ind).consecutiveInvisibleCount + 1;
        end
    end

%% Delete Lost Tracks
% The |deleteLostTracks| function deletes tracks that have been invisible
% for too many consecutive frames. It also deletes recently created tracks
% that have been invisible for too many frames overall. 

    function deleteLostTracks()
        if isempty(tracks)
            return;
        end
        
        invisibleForTooLong = 20;
        ageThreshold = 8;
        
        % Compute the fraction of the track's age for which it was visible.
        ages = [tracks(:).age];
        totalVisibleCounts = [tracks(:).totalVisibleCount];
        visibility = totalVisibleCounts ./ ages;
        
        % Find the indices of 'lost' tracks.
        lostInds = (ages < ageThreshold & visibility < 0.6) | ...
            [tracks(:).consecutiveInvisibleCount] >= invisibleForTooLong;
        
        % Delete lost tracks.
        tracks = tracks(~lostInds);
    end

%% Create New Tracks
% Create new tracks from unassigned detections. Assume that any unassigned
% detection is a start of a new track. In practice, you can use other cues
% to eliminate noisy detections, such as size, location, or appearance.

    function createNewTracks()
        centroids = centroids(unassignedDetections, :);
        bboxes = bboxes(unassignedDetections, :);
        
        for i = 1:size(centroids, 1)
            
            centroid = centroids(i,:);
            bbox = bboxes(i, :);
            
            % Create a Kalman filter object.
            kalmanFilter = configureKalmanFilter('ConstantVelocity', ...
                centroid, [200, 50], [100, 25], 100);
            
            % Create a new track.
            newTrack = struct(...
                'id', nextId, ...
                'bbox', bbox, ...
                'kalmanFilter', kalmanFilter, ...
                'age', 1, ...
                'totalVisibleCount', 1, ...
                'consecutiveInvisibleCount', 0);
            
            % Add it to the array of tracks.
            tracks(end + 1) = newTrack;
            
            % Increment the next id.
            nextId = nextId + 1;
        end
    end

%% Display Tracking Results
% The |displayTrackingResults| function draws a bounding box and label ID 
% for each track on the video frame and the foreground mask. It then 
% displays the frame and the mask in their respective video players. 

    function displayTrackingResults()
        % Convert the frame and the mask to uint8 RGB.
        frame = im2uint8(frame);
        mask = uint8(repmat(mask, [1, 1, 3])) .* 255;
        
        minVisibleCount = 8;
        if ~isempty(tracks)
              
            % Noisy detections tend to result in short-lived tracks.
            % Only display tracks that have been visible for more than 
            % a minimum number of frames.
            reliableTrackInds = ...
                [tracks(:).totalVisibleCount] > minVisibleCount;
            reliableTracks = tracks(reliableTrackInds);
            
            % Display the objects. If an object has not been detected
            % in this frame, display its predicted bounding box.
            if ~isempty(reliableTracks)
                % Get bounding boxes.
                bboxes = cat(1, reliableTracks.bbox);
                
                % Get ids.
                ids = int32([reliableTracks(:).id]);
                
                % Create labels for objects indicating the ones for 
                % which we display the predicted rather than the actual 
                % location.
                labels = cellstr(int2str(ids'));
                predictedTrackInds = ...
                    [reliableTracks(:).consecutiveInvisibleCount] > 0;
                isPredicted = cell(size(labels));
                isPredicted(predictedTrackInds) = {' predicted'};
                labels = strcat(labels, isPredicted);
                
                % Draw the objects on the frame.
                frame = insertObjectAnnotation(frame, 'rectangle', ...
                    bboxes, labels);
                
                % Draw the objects on the mask.
                mask = insertObjectAnnotation(mask, 'rectangle', ...
                    bboxes, labels);
            end
        end
        
        % Display the mask and the frame.
        obj.maskPlayer.step(mask);        
        obj.videoPlayer.step(frame);
    end

%% Summary
% This example created a motion-based system for detecting and
% tracking multiple moving objects. Try using a different video to see if
% you are able to detect and track objects. Try modifying the parameters
% for the detection, assignment, and deletion steps.  
%
% The tracking in this example was solely based on motion with the
% assumption that all objects move in a straight line with constant speed.
% When the motion of an object significantly deviates from this model, the
% example may produce tracking errors. Notice the mistake in tracking the
% person labeled #12, when he is occluded by the tree. 
%
% The likelihood of tracking errors can be reduced by using a more complex
% motion model, such as constant acceleration, or by using multiple Kalman
% filters for every object. Also, you can incorporate other cues for
% associating detections over time, such as size, shape, and color. 

displayEndOfDemoMessage(mfilename)
end

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
事件驱动视觉是一种新型的目标跟踪方法,它利用视觉传感器对目标的视觉变化进行实时响应。传统的目标跟踪方法往往通过连续的图像帧来实现目标的位置预测和跟踪,然而这种方法在处理高速移动目标时会存在一定的困难。而事件驱动视觉则能够在目标产生事件变化时立即做出响应,实现对目标的快速跟踪和定位。这种方式能够在高速移动目标的情况下更加稳定和准确地进行跟踪,大大提高了目标跟踪的效率和准确性。 事件驱动视觉利用神经元级别的传感器对光强的变化进行监测,只有在光强发生明显变化时才会输出事件信号,因此能够对光线变化的信息进行高效地捕捉。而传统的图像传感器则会对整个图像进行连续的采集和处理,无法很好地应对高速移动目标产生的快速光强变化。通过事件驱动视觉,可以实现对快速移动目标的高速跟踪,同时还能够减少对计算资源的需求,提高目标跟踪的实时性和稳定性。 总的来说,事件驱动视觉为目标跟踪提供了一种全新的思路和方法,通过对光强变化的快速响应,能够实现对高速移动目标的快速、稳定和准确的跟踪,对于机器人、自动驾驶等领域的应用具有非常大的潜力和价值。随着事件传感器技术的不断发展和完善,事件驱动视觉在目标跟踪领域的应用前景也将会更加广阔。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值