协同优化算法

协同优化算法

维基百科,自由的百科全书
跳转到: 导航, 搜索

协同优化算法的原理是将一复杂的目标函数分解成简单的子目标函数,然后再将这些子目标函数进行协同优化。具体说来,协同优化是在优化每一子目标函数同时综合考虑其它子目标函数的结果,使子目标函数之间的优化结果能够一致。优化结果一致是指使每一变量的值在每一子目标函数的优化结果中能够一致。一般来说,可以证明,如果变量的值一致则为最优解。协同优化算法没有局部最优问题同时具有非常良好的收敛特性。 它很好地解决了许多实际中非线性优化及组合优化难题。

如果目标函数是一n个变量的函数E(x_1, x_2, \ldots, x_n),简写成E(x),协同优化算法先将它分解成n个简单的子目标函数:

E(x) = E_1(x) + E_2(x) + \ldots + E_n(x).

如果单独优化每一子目标函数,则它们的结果很难达到一致。例如,变量x_i在包含它的子目标函数中的最优解值很难相同。对于i=1,2,\ldots,n,如果我们取E_i(x)的最优解中x_i的值作为该变量的值,表示成\tilde{x}_i,

\tilde{x}_i = \arg \min_{x_i} \min_{X_i \setminus x_i} E_i(x),这里, X_iE_i(x)的变量集, X_i \setminus x_i指变量集 X_i除去元素 x_i

(\tilde{x}_1,\tilde{x}_2,\ldots,\tilde{x}_n)则很难为原目标函数E(x)的最优解。

为了使子目标函数之间的优化结果能够一致,协同优化算法在优化每一子目标函数E_i(x)同时考虑其它子目标函数的结果,

\Psi_j(x_j) = \min_{X_j \setminus x_j} E_j(x)

具体做法是利用其它子目标函数的优化结果通过数值加权修正每一个子目标函数如下,

\left(1 - \lambda \right) E_i(x) + \lambda_k \sum_{j} w_{ij} \Psi_j(x_j),这里, \lambda_k,w_{ij}为加权系数,满足 0 \le \lambda_k,w_{ij} \le 1

然后对修正后的子目标函数进行优化,优化结果再叠代放入修正的子目标函数中。协同优化算法的叠代方程如下,

\Psi^{(k)}_i (x_i) = \min_{X_i \setminus{x_i}}\left( \left(1 - \lambda_k \right) E_i(x) +\lambda_k \sum_{j} w_{ij} \Psi^{(k-1)}_j(x_j)\right), \quad for \; i=1,2,\ldots,n.

协同优化结果使每一变量的值在每一子目标函数的优化结果中达到一致。如果一致,则子目标函数的优化解既为最优解。

理论价值

现代优化理论中最重要的未解难题是发现通用的全局最优化条件。由于没有全局最优化条件,我们不知道哪里可以找到最优解,也不知道现有解是不是最优解. 因此,我们不知道如何更有效地组织优化过程及何时及时中断搜索。任何全局最优化条件既有理论意义和实用价值。协同优化算法基于一种全新的优化原理解决了这一重要问题。

协同优化理论及量子力学的关系

从协同优化算法可以推导出薛定谔方程

假设目标能量函数为

E(x_1, x_2, \ldots, x_n) = \sum^{n}_{i=1} \left(e_i (x_{i}) + \sum^{n}_{j:~j > i} e_{ij} (x_i, x_j) \right), \quad where \; e_{ij}(x_i, x_j) = e_{ji}(x_j, x_i).

协同优化算法在半环(C,+,\times)上的形式为

\psi_i(x_i, t + \Delta t) = \frac{1}{Z_i (t + \Delta t)} \psi_i(x_i, t) e^{-(\Delta t/\hbar)e_i(x_i)} \prod_{j, j \not = i} \int d x_j \; e^{-(\Delta t/\hbar)e_{ij}(x_i, x_j)} \left|\psi_j (x_j, t)\right|^2,

如果让\Delta t \rightarrow 0^{+}及用高斯函数平滑 \psi_i \left(x_i,t \right) ,则上式收敛后变成薛定谔方程如下:

E_i \psi_i(x_i, t)  =  \left( -\frac{\hbar^2}{2 m_i} \nabla^2_i + V_i(x_i) \right) \psi_i(x_i, t);

这里

V_i(x_i) = e_i + \sum_{j, j \not = i} \int d x_j~e_{ij} |\psi_j (x_j, t)|^2.

薛定谔方程是物理学中最基本的方程。因此,我们可以对自然界中一般分子及蛋白分子如何形成这一非线性优化问题从全局优化的角度有进一步更深的认识。


参考文献

  • X. Huang, “Deriving the Normalized Min-Sum Algorithm from Cooperative Optimization”, accepted by IEEE Information Theory Workshop, Chengdu, China, 2006 (网上下载).
  • X. Huang, ``The cooperative optimization metaheuristic: Inspiration from nature and applications, Computational Intelligence, ICIC 2005, Springer-Verlag, LNAI 4114, 2006, pp. 1246--1251.
  • X. Huang, ``A general extension of constraint propagation for constraint optimization, Principles of Practice of Constraint Programming - CP 2004, Spinger-Verlag, LNCS 3258, 2004, pp. 737--741.
  • X. Huang, ``Near perfect decoding of LDPC codes, Proceedings of IEEE International Symposium on Information Theory (ISIT), 2005, pp. 302--306 (网上下载).
  • X. Huang, “A New Kind of Hopfield Networks for Finding Global Optimum”, International Joint Conference on Neural Networks, Montreal, Canada, 2005, pp.764-769 (网上下载).
  • X. Huang, ``Cooperative optimization for solving large scale combinatorial problems, Theory and Algorithms for Cooperative Systems, Series on Computers and Operations Research, World Scientific, 2004, pp. 117--156 (ISBN 981-256-020-3).
  • X. Huang, ``Image segmentation by cooperative optimization, IEEE International Conference on Image Processing (ICIP), Singapore, 2004, pp. 945--948.
  • X. Huang, ``Cooperative optimization for energy minimization in computer vision: A case study of stereo matching, Pattern Recognition, 26th DAGM Symposium, Springer-Verlag, LNCS 3175, 2004, pp. 302--309.
  • X. Huang, ``A general framework for constructing cooperative global optimization algorithms, Frontiers in Global Optimization, Nonconvex Optimization and Its Applications, Kluwer Academic Publishers, 2004, pp. 179--221 (ISBN 1-4020-7699-1).
  • X. Huang, “A Polynomial Time Algorithm for Solving NP-hard Problems in Practice”, ACM SIGACT Volume 34, Issue 1, March 2003, pp. 101-108.
  • X. Huang, “A Cooperative Search Approach for Global Optimization”, Oral Presentation at the First International Conference on Optimization Methods and Software, Hangzhou, China, 2002.
  • 黄晓非,丁溯泉,杨知行,吴佑寿,"GF(q)域上的低密度校验(LDPC)码的译码及其在深空通讯中的应用",飞行器测控学报",第25卷,第2期,2006年4月.

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于演化策略的协同优化算法是一种基于生物进化原理的优化算法。它通过模拟生物进化过程中的选择、交叉和变异等操作,来搜索问题的最优解。 协同优化算法是指多个智能体协同工作,共同完成优化任务。在基于演化策略的协同优化算法中,每个智能体代表一个可能的解,通过不断地进行选择、交叉和变异操作,逐步优化解的质量。 具体来说,基于演化策略的协同优化算法包括以下步骤: 1. 初始化种群:随机生成一组初始解作为种群。 2. 评估适应度:对每个解进行评估,计算其适应度值,代表解的优劣程度。 3. 选择操作:根据适应度值选择一部分解作为父代。 4. 交叉操作:对选中的父代解进行交叉操作,生成新的子代解。 5. 变异操作:对子代解进行变异操作,引入一定的随机性。 6. 评估适应度:对子代解进行评估,计算其适应度值。 7. 更新种群:根据适应度值进行种群更新,保留适应度较高的解。 8. 终止条件判断:判断是否满足终止条件,如达到最大迭代次数或找到满意的解。 9. 返回最优解:返回适应度最高的解作为最优解。 基于演化策略的协同优化算法在解决复杂优化问题时具有一定的优势,它能够通过多个智能体的合作,探索问题空间中的不同解,并逐步优化解的质量。然而,该算法也存在一些局限性,如收敛速度较慢、易陷入局部最优等问题,需要根据具体问题进行合理调整和改进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值