Numpy给数组升维度
背景
- 很多数据计算都是二维和三维,对于一维数组为了形状的匹配就需要进行升维。
需要
- 在不该表数组数据的情况下,添加数组维度:
- 原始数组:arr=[4,5,6,7],其shape为(4,),取值为arr[0],arr[1],arr[2],arr[3]
- 变形后数组:arr=[[4,5,6,7]],其shape(1,4),取值为arr[0,0],arr[0,1],arr[0,2],arr[0,3]
升维的3种方法
- np.newaxis 关键字,使用索引的语法给数组添加维度
- np.expand_dims(arr,axis) 和newaxis实现功能一样,给arr添加维度
- np.reshape(arr,newshape) 给一个维度设置newshape完成升维
import numpy as np
arr=np.arange(10)
arr
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
arr.shape
(10,)
方法一 np.newaxis
- 注意np.newaxis别名是None
np.newaxis is None
True
np.newaxis==None
True
即以下所有np.newaxis都可以使用None替代
给一维数组添加一个行维度
arr

这篇博客介绍了如何使用Numpy库在不改变数组数据的情况下,为一维数组增加行或列维度。主要讨论了三种方法:1) 使用`np.newaxis`或`None`关键字;2) 应用`np.expand_dims`函数指定轴方向添加维度;3) 利用`np.reshape`函数指定新的形状进行升维。内容详细展示了每种方法的具体用法和示例。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



