摘要
记录了安装pyTorch Geometric过程,及第一步要注意的提示。从虚拟环境开始,到pytorch的安装,再到pyG安装与最后的测试。记录了了两个问题的分析与具体解决[OSError: libcusparse.so.10: cannot open shared object file: No such file or directory与ERROR: Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output.],最后完成demo无误的运行。
第一步创建虚拟环境
conda create --prefix=/opt/data/private/pyenvs/pyg_env python=3.6
source activate /opt/data/private/pyenvs/pyg_env
注意了,这里的采用了指定目录的,conda env list是不会列出来的哈。
第二步安装pytorch
https://pytorch.org/get-started/previous-versions/
选择了1.6.0版本,找到linux的环境的如下安装脚本:
# CUDA 10.2
pip install torch==1.6.0 torchvision==0.7.0
注意在安装时要安装 (1.4.0, 1.5.0, 1.6.0, 1.7.0)这些版本的,其它的可能不支持咯。选择了1.6.0,意味着它是要cuda10.2的支持的,虽然运行pytorch没有发现问题,后面运行pyG时的问题就出现了。
第三步安装PyG
参考:https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-geometric
注意这个安装前要查看cuda与torch的版本。另外,还要注意最后一条安装是否可行。
第四步,测试一个小demo
import torch
from torch_geometric.data import Data
edge_index = torch.tensor([[0, 1, 1, 2],
[1, 0, 2, 1]], dtype=torch.long)
x = torch.tensor([[-1], [0], [1]], dtype=torch.float)
data = Data(x=x, edge_index=edge_index)
>>> Data(edge_index=[2, 4]