泛函分析复习笔记(一)度量空间

本文是泛函分析复习笔记的第一部分,重点介绍度量空间的概念和性质,包括距离的三个性质、度量空间的定义、收敛的定义、闭集和完备空间的概念。此外,还讨论了连续映射、压缩映射原理和等距同构等重要概念。
摘要由CSDN通过智能技术生成

参考教材:《泛函分析讲义》张恭庆、林源渠 第二版(上) 第1-3章
因为字数太多所以按照章节分成3部分发出
内容完全为书上定理和例子的总结整理

泛函分析复习笔记

Chapter 1 度量空间

距离 ρ : X × X → R \rho:\mathscr{X}\times \mathscr{X}\rightarrow \R ρ:X×XR: (1) (正定性) ρ ( x , y ) ≥ 0 , = 0  iff  x = y \rho(x,y)\geq 0, =0 \text{ iff } x=y ρ(x,y)0,=0 iff x=y (2)(对称性) ρ ( x , y ) = ρ ( y , x ) \rho(x,y)=\rho(y,x) ρ(x,y)=ρ(y,x) (3)(正定性) ρ ( x , z ) ≤ ρ ( x , y ) + ρ ( y , z ) \rho(x,z)\leq \rho(x,y)+\rho(y,z) ρ(x,z)ρ(x,y)+ρ(y,z)引入距离的目的是借助实数的完备、全序性刻画收敛

度量空间:装备距离的空间 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)

收敛 { x n } ⊂ ( X , ρ ) \{x_n\}\subset (\mathscr{X},\rho) { xn}(X,ρ)收敛到 x 0 x_0 x0,若 lim ⁡ n → ∞ ρ ( x n , x 0 ) = 0 \lim_{n\rightarrow \infty} \rho(x_n,x_0)=0 limnρ(xn,x0)=0,记为 lim ⁡ n → ∞ x n = x 0 \lim_{n\rightarrow \infty} x_n=x_0 limnxn=x0 x n → x 0 x_n\rightarrow x_0 xnx0

伴随收敛会产生很多性质:

闭集 E ⊂ ( X , ρ ) E\subset (\mathscr{X},\rho) E(X,ρ)称为闭集,若 ∀ { x n } ⊂ E , x n → x 0 ⇒ x 0 ∈ E \forall \{x_n\} \subset E, x_n\rightarrow x_0\Rightarrow x_0\in E { xn}E,xnx0x0E

基本列 ρ ( x n , x m ) → 0 \rho(x_n,x_m)\rightarrow 0 ρ(xn,xm)0

完备:若一个空间的所有基本列均收敛,则称其为完备空间

连续:映射 T : ( X , ρ ) → ( Y , γ ) T:(\mathscr{X},\rho)\rightarrow (\mathscr{Y},\gamma) T:(X,ρ)(Y,γ)称为连续映射,若 ∀ { x n } → ρ x 0 ⇒ { T x n } → γ T x 0 \forall \{x_n\}\rightarrow_\rho x_0\Rightarrow \{Tx_n\}\rightarrow_\gamma Tx_0 { xn}ρx0{ Txn}γTx0

​ 等价于 ∀ ε > 0 , ∀ x 0 ∈ X , ∃ δ = δ ( x 0 , ε ) > 0 \forall \varepsilon>0, \forall x_{0} \in \mathscr{X}, \exists \delta=\delta\left(x_{0}, \varepsilon\right)>0 ε>0,x0X,δ=δ(x0,ε)>0,使得 ρ ( x , x 0 ) < δ ⟹ r ( T x , T x 0 ) < ε ( ∀ x ∈ X ) \rho\left(x, x_{0}\right)<\delta \Longrightarrow r\left(T x, T x_{0}\right)<\varepsilon \quad(\forall x \in \mathscr{X}) ρ(x,x0)<δr(Tx,Tx0)<ε(xX)

压缩映射原理 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)为完备度量空间,且T为其到自身的压缩映射($T:\exists 0<\alpha<1 \text {, 使得 } \rho(T x, T y) \leqslant \alpha \rho(x, y)(\forall x, y \in \mathscr{X}) ) , 则 T 在 ),则T在 T\mathscr{X}$上有唯一的不动点

等距同构:设 ( X , ρ ) , ( X 1 , ρ 1 ) (\mathscr{X},\rho), (\mathscr{X}_1,\rho_1) (X,ρ),(X1,ρ1)为两个度量空间,如果映射 φ : X → X 1 \varphi : \mathscr{X}\rightarrow \mathscr{X}_1 φ:XX1为双射,且 ρ ( x , y ) = ρ 1 ( φ x , φ y ) \rho(x,y)=\rho_1(\varphi x,\varphi y) ρ(x,y)=ρ1(φx,φy),则称其为等距同构,之后在度量上不再区分这两个空间。

嵌入:如果 ( X , ρ ) (\mathscr{X},\rho) (X,ρ) ( X 1 , ρ 1 ) (\mathscr{X}_1,\rho_1) (X1,ρ1)的一个子空间同构,则称其可以嵌入之,记为 ( X , ρ ) ⊂ ( X 1 , ρ 1 ) (\mathscr{X},\rho)\subset(\mathscr{X}_1,\rho_1) (X,ρ)(X1,ρ1)

稠密:称 E ⊂ ( X , ρ ) E\subset (\mathscr{X},\rho) E(X,ρ)为稠密子集,若 ∀ x ∈ X , ∃ { x n } ∈ E , x n → x \forall x\in \mathscr{X}, \exists \{x_n\}\in E, x_n\rightarrow x xX,{ xn}E,xnx

完备化:思想:模仿用有理数构造无理数的完备化过程:通过定理极限元构造完备化空间

完备化空间:包含 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)的最小完备度量空间

​ 命题:若完备空间 ( X 1 , ρ 1 ) (\mathscr{X}_1,\rho_1) (X1,ρ1) ( X , ρ ) (\mathscr{X},\rho) (X,ρ)为子空间,且 ρ 1 ∣ X × X = ρ \rho_1 |_{\mathscr{X}\times \mathscr{X}}=\rho ρ1X×X=ρ,并且 X \mathscr{X} X X 1 \mathscr{X}_1 X1中稠密,则 X 1 \mathscr{X}_1 X1 X \mathscr{X} X的完备化空间

​ 完备化空间的构造:(1)基本列以极限点划分为等价类(2)完备+稠密

列紧 A ⊂ ( X , ρ ) A\subset (\mathscr{X},\rho) A(X,ρ),称A是列紧的,若A中的任意点列在 X \mathscr{X} X中有收敛子列;若这个子列还必定收敛到A中,则称A是自列紧的;如果 X \mathscr{X} X是列紧的,则称为列紧空间

推论:列紧空间的任何(闭)子集(自)列紧

ϵ \epsilon ϵ-:如果 N ⊂ M ⊂ ( X , ρ ) N\subset M\subset (\mathscr{X},\rho) NM(X,ρ),并且对给定 ϵ , ∀ x ∈ M , ∃ y , ρ ( x , y ) < ϵ \epsilon, \forall x \in M, \exists y, \rho(x,y)<\epsilon

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值