参考教材:《泛函分析讲义》张恭庆、林源渠 第二版(上) 第1-3章
因为字数太多所以按照章节分成3部分发出
内容完全为书上定理和例子的总结整理
泛函分析复习笔记
Chapter 1 度量空间
距离: ρ : X × X → R \rho:\mathscr{X}\times \mathscr{X}\rightarrow \R ρ:X×X→R: (1) (正定性) ρ ( x , y ) ≥ 0 , = 0 iff x = y \rho(x,y)\geq 0, =0 \text{ iff } x=y ρ(x,y)≥0,=0 iff x=y (2)(对称性) ρ ( x , y ) = ρ ( y , x ) \rho(x,y)=\rho(y,x) ρ(x,y)=ρ(y,x) (3)(正定性) ρ ( x , z ) ≤ ρ ( x , y ) + ρ ( y , z ) \rho(x,z)\leq \rho(x,y)+\rho(y,z) ρ(x,z)≤ρ(x,y)+ρ(y,z) (引入距离的目的是借助实数的完备、全序性刻画收敛)
度量空间:装备距离的空间 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)
收敛: { x n } ⊂ ( X , ρ ) \{x_n\}\subset (\mathscr{X},\rho) {xn}⊂(X,ρ)收敛到 x 0 x_0 x0,若 lim n → ∞ ρ ( x n , x 0 ) = 0 \lim_{n\rightarrow \infty} \rho(x_n,x_0)=0 limn→∞ρ(xn,x0)=0,记为 lim n → ∞ x n = x 0 \lim_{n\rightarrow \infty} x_n=x_0 limn→∞xn=x0或 x n → x 0 x_n\rightarrow x_0 xn→x0
伴随收敛会产生很多性质:
闭集: E ⊂ ( X , ρ ) E\subset (\mathscr{X},\rho) E⊂(X,ρ)称为闭集,若 ∀ { x n } ⊂ E , x n → x 0 ⇒ x 0 ∈ E \forall \{x_n\} \subset E, x_n\rightarrow x_0\Rightarrow x_0\in E ∀{xn}⊂E,xn→x0⇒x0∈E
基本列: ρ ( x n , x m ) → 0 \rho(x_n,x_m)\rightarrow 0 ρ(xn,xm)→0
完备:若一个空间的所有基本列均收敛,则称其为完备空间
连续:映射 T : ( X , ρ ) → ( Y , γ ) T:(\mathscr{X},\rho)\rightarrow (\mathscr{Y},\gamma) T:(X,ρ)→(Y,γ)称为连续映射,若 ∀ { x n } → ρ x 0 ⇒ { T x n } → γ T x 0 \forall \{x_n\}\rightarrow_\rho x_0\Rightarrow \{Tx_n\}\rightarrow_\gamma Tx_0 ∀{xn}→ρx0⇒{Txn}→γTx0
等价于 ∀ ε > 0 , ∀ x 0 ∈ X , ∃ δ = δ ( x 0 , ε ) > 0 \forall \varepsilon>0, \forall x_{0} \in \mathscr{X}, \exists \delta=\delta\left(x_{0}, \varepsilon\right)>0 ∀ε>0,∀x0∈X,∃δ=δ(x0,ε)>0,使得 ρ ( x , x 0 ) < δ ⟹ r ( T x , T x 0 ) < ε ( ∀ x ∈ X ) \rho\left(x, x_{0}\right)<\delta \Longrightarrow r\left(T x, T x_{0}\right)<\varepsilon \quad(\forall x \in \mathscr{X}) ρ(x,x0)<δ⟹r(Tx,Tx0)<ε(∀x∈X)
压缩映射原理: ( X , ρ ) (\mathscr{X},\rho) (X,ρ)为完备度量空间,且T为其到自身的压缩映射($T:\exists 0<\alpha<1 \text {, 使得 } \rho(T x, T y) \leqslant \alpha \rho(x, y)(\forall x, y \in \mathscr{X}) ) , 则 T 在 ),则T在 ),则T在\mathscr{X}$上有唯一的不动点
等距同构:设 ( X , ρ ) , ( X 1 , ρ 1 ) (\mathscr{X},\rho), (\mathscr{X}_1,\rho_1) (X,ρ),(X1,ρ1)为两个度量空间,如果映射 φ : X → X 1 \varphi : \mathscr{X}\rightarrow \mathscr{X}_1 φ:X→X1为双射,且 ρ ( x , y ) = ρ 1 ( φ x , φ y ) \rho(x,y)=\rho_1(\varphi x,\varphi y) ρ(x,y)=ρ1(φx,φy),则称其为等距同构,之后在度量上不再区分这两个空间。
嵌入:如果 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)和 ( X 1 , ρ 1 ) (\mathscr{X}_1,\rho_1) (X1,ρ1)的一个子空间同构,则称其可以嵌入之,记为 ( X , ρ ) ⊂ ( X 1 , ρ 1 ) (\mathscr{X},\rho)\subset(\mathscr{X}_1,\rho_1) (X,ρ)⊂(X1,ρ1)
稠密:称 E ⊂ ( X , ρ ) E\subset (\mathscr{X},\rho) E⊂(X,ρ)为稠密子集,若 ∀ x ∈ X , ∃ { x n } ∈ E , x n → x \forall x\in \mathscr{X}, \exists \{x_n\}\in E, x_n\rightarrow x ∀x∈X,∃{xn}∈E,xn→x
完备化:思想:模仿用有理数构造无理数的完备化过程:通过定理极限元构造完备化空间
完备化空间:包含 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)的最小完备度量空间
命题:若完备空间 ( X 1 , ρ 1 ) (\mathscr{X}_1,\rho_1) (X1,ρ1)以 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)为子空间,且 ρ 1 ∣ X × X = ρ \rho_1 |_{\mathscr{X}\times \mathscr{X}}=\rho ρ1∣X×X=ρ,并且 X \mathscr{X} X在 X 1 \mathscr{X}_1 X1中稠密,则 X 1 \mathscr{X}_1 X1为 X \mathscr{X} X的完备化空间
完备化空间的构造:(1)基本列以极限点划分为等价类(2)完备+稠密
列紧: A ⊂ ( X , ρ ) A\subset (\mathscr{X},\rho) A⊂(X,ρ),称A是列紧的,若A中的任意点列在 X \mathscr{X} X中有收敛子列;若这个子列还必定收敛到A中,则称A是自列紧的;如果 X \mathscr{X} X是列紧的,则称为列紧空间
推论:列紧空间的任何(闭)子集(自)列紧
ϵ \epsilon ϵ-网:如果 N ⊂ M ⊂ ( X , ρ ) N\subset M\subset (\mathscr{X},\rho) N⊂M⊂(X,ρ),并且对给定 ϵ , ∀ x ∈ M , ∃ y , ρ ( x , y ) < ϵ \epsilon, \forall x \in M, \exists y, \rho(x,y)<\epsilon ϵ,∀x∈M,∃y,ρ(x,y)<ϵ,则N称为M的一个 ϵ \epsilon ϵ-网,如果N的元素个数有限,则称为有穷 ϵ \epsilon ϵ-网
完全有界:集合M称为完全有界的,如果 ∀ ϵ > 0 \forall \epsilon >0 ∀ϵ>0,都存在M的一个有穷 ϵ \epsilon ϵ-网(完全有界 → \rightarrow →有界)
Hausdorff定理:(完备)度量空间 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)中的集合M列紧必须(且仅需)M完全有界
可分:一个度量空间若有可数的稠密子集,则可分
定理:完全有界 ⇒ \Rightarrow ⇒可分
紧:在空间 X \mathscr{X} X中,集合M称为紧的,如果任意的开覆盖必有有限子覆盖
定理:紧 ⇔ \Leftrightarrow ⇔自列紧
Arzela-Ascoli定理: F ∈ ( C ( M ) , ρ ) , ρ = max t ∈ M ∣ u ( t ) − v ( t ) ∣ F\in (C(M),\rho),\rho=\max_{t\in M} |u(t)-v(t)| F∈(C(M),ρ),ρ=maxt∈M∣u(t)−v(t)∣列紧当且仅当F一致有界且等度连续
以上讨论的均为度量空间的拓扑性质,但是更多时候需要增加空间上元素的运算来给出额外性质,因此以下讨论空间的一些代数结构
线性空间、线性同构、线性子空间、线性流形、线性相关、基、维数、直和
线性包: { x λ ∣ λ ∈ Λ } \left\{x_{\lambda} \mid \lambda \in \Lambda\right\} {xλ∣λ∈Λ} 是 X \mathscr{X} X 中的向量族,由其中元素的有穷线性组合构成的集合 { y = α 1 x λ 1 + ⋯ + α n x λ n ∣ λ i ∈ Λ , α i ∈ K , i = 1 , 2 , ⋯ , n } \left\{y=\alpha_{1} x_{\lambda_{1}}+\cdots+\alpha_{n} x_{\lambda_{n}} \mid \lambda_{i} \in \Lambda, \alpha_{i} \in \mathbb{K}, i=1,2, \cdots, n\right\} {y=α1xλ1+⋯+αnxλn∣λi∈Λ,αi∈K,i=1,2,⋯,n}称为 { x λ ∣ λ ∈ Λ } \left\{x_{\lambda} \mid \lambda \in \Lambda\right\} {xλ∣λ∈Λ} 的线性包。线性包是一个线性子空间(注意线性空间的定义:要求 ∀ x , y ∈ X , x + y ∈ X \forall x,y\in X, x+y\in X ∀x,y∈X,x+y∈X,所以根据归纳应为有限组合),不难证明它是包含 { x λ ∣ λ ∈ Λ } \left\{x_{\lambda} \mid \lambda \in \Lambda\right\} {xλ∣λ∈Λ} 的一切线性子空间的交,因此称为 { x λ ∣ λ ∈ Λ } \left\{x_{\lambda} \mid \lambda \in \Lambda\right\} {xλ∣λ∈Λ} 张成的线性子空间, 记为 span { x λ ∣ λ ∈ Λ } . \operatorname{span}\left\{x_{\lambda} \mid \lambda \in \Lambda\right\} . span{xλ∣λ∈Λ}.
线性空间上的距离:要求度量函数 ρ \rho ρ额外满足:(1)平移不变性(等价于加法连续性)(2)数乘连续性,从而可以导出 p ( x − y ) = ρ ( x − y , θ ) = ρ ( x , y ) p(x-y)=\rho(x-y,\theta)=\rho(x,y) p(x−y)=ρ(x−y,θ)=ρ(x,y)应当满足的性质,即得到准范数的定义:
准范数: ∥ ⋅ ∥ : X → R \|\cdot \|:\mathscr{X}\rightarrow \mathbb{R} ∥⋅∥:X→R满足:(1)正定性: ∥ x ∥ ≥ 0 , = 0 ⇔ x = θ \|x\|\geq 0, =0 \Leftrightarrow x=\theta ∥x∥≥0,=0⇔x=θ (2)三角不等式: ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ \|x+y\|\leq \|x\|+\|y\| ∥x+y∥≤∥x∥+∥y∥ (3)对称性: ∥ − x ∥ = ∥ x ∥ \|-x\|=\|x\| ∥−x∥=∥x∥ (4) 数乘连续性: lim α n → 0 ∥ α n x ∥ = 0 , lim ∣ ∣ x n ∣ ∣ → 0 ∥ α x n ∥ = 0 \lim_{\alpha_n\rightarrow 0} \|\alpha_n x\|=0, \lim_{||x_n||\rightarrow 0} \|\alpha x_n\|=0 limαn→0∥αnx∥=0,lim∣∣xn∣∣→0∥αxn∥=0
范数:具有齐次性的准范数:性质(3),(4)更改为: ∥ α x ∥ = ∣ α ∣ ∥ x ∥ \|\alpha x\|=|\alpha|\|x\| ∥αx∥=∣α∣∥x∥
空间分类:度量为准范数的空间称为 F ∗ F^* F∗空间,完备则称为 F F F空间;度量为范数的空间称为 B ∗ B^* B∗空间,完备则称为 B B B空间
范数等价:在空间 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)中的两个范数:$ ||\cdot||_2\succ ||\cdot||_1,\text{iff } ||x_n||_2\rightarrow 0\Rightarrow ||x_n||_1\rightarrow 0$, ⇔ ∃ C , ∣ ∣ x ∣ ∣ 1 ≤ C ∣ ∣ x ∣ ∣ 2 \Leftrightarrow \exists C, ||x||_1\leq C||x||_2 ⇔∃C,∣∣x∣∣1≤C∣∣x∣∣2,因此范数等价就是比例存在上下界
定理:有穷维线性空间上的任何两个范数等价(都等价于基坐标的标准欧式范数)
次线性泛函: P : X → R P:\mathscr{X}\rightarrow \mathbb{R} P:X→R,满足:(1) 三角不等式 (2)正齐次性( P ( λ x ) = λ P ( x ) , ∀ λ > 0 P(\lambda x)=\lambda P(x),\forall \lambda >0 P(λx)=λP(x),∀λ>0)
半范数:次线性泛函:正齐次性=>齐次性( P ( α x ) = ∣ α ∣ P ( x ) P(\alpha x)=|\alpha|P(x) P(αx)=∣α∣P(x))+非负性
有穷维 B ∗ B^* B∗空间的刻画:
定理:一个 B ∗ B^* B∗空间维数有限当且仅当其单位球面列紧,当且仅当其任意有界集合列紧
Riesz引理:如果 X 0 \mathscr{X_0} X0为 B ∗ B^* B∗空间 X \mathscr{X} X的一个真闭子空间,则 ∀ ϵ ∈ ( 0 , 1 ) , ∃ y ∈ X , ∣ ∣ y ∣ ∣ = 1 , ∣ ∣ y − x ∣ ∣ ≥ 1 − ϵ , ∀ x ∈ X 0 \forall \epsilon \in (0,1), \exists y\in \mathscr{X}, ||y||=1, ||y-x||\geq 1-\epsilon ,\forall x\in \mathscr{X_0} ∀ϵ∈(0,1),∃y∈X,∣∣y∣∣=1,∣∣y−x∣∣≥1−ϵ,∀x∈X0
商空间: B ∗ B^* B∗空间 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)有闭线性子空间 X 0 \mathscr{X}_0 X0,则定义等价类 x ∼ x ′ s . t . x − x ′ ∈ X 0 x\sim x' s.t. x-x'\in \mathscr{X}_0 x∼x′s.t.x−x′∈X0,则构成一个商空间 X / X 0 \mathscr{X}/\mathscr{X_0} X/X0,且若在其上定义模长 ∣ ∣ [ x ] ∣ ∣ 0 = inf y ∈ [ x ] ∣ ∣ y ∣ ∣ ||[x]||_0=\inf_{y\in [x]} ||y|| ∣∣[x]∣∣0=infy∈[x]∣∣y∣∣,则此商空间是 B ∗ B^* B∗空间,且若原空间为B空间,则商空间也是B空间
凸集:任意线段均在其中的集合(凸集的定义与度量无关,因此下面默认为线空即可)
性质:凸集的并为凸集;任意集合A存在凸包 c o ( A ) = ∑ i = 1 n λ i x i , ∑ i λ i = 1. λ i ≥ 0 , ∀ n co(A)={\sum_{i=1}^n \lambda_i x_i},\sum_i \lambda _i=1. \lambda _i\geq 0,\forall n co(A)=∑i=1nλixi,∑iλi=1.λi≥0,∀n
Minkowski泛函:C为含有 θ \theta θ的凸集,则可以定义取值于 [ 0 , ∞ ] [0,\infty] [0,∞]的函数 P ( x ) = inf { λ > 0 ∣ x / λ ∈ C } P(x)=\inf \{\lambda >0| x/\lambda \in C\} P(x)=inf{λ>0∣x/λ∈C}(x所在方向的外层)
性质: P ( θ ) = 0 , P ( λ x ) = λ P ( x ) ( λ > 0 ) , P ( x + y ) ≤ P ( x ) + P ( y ) P(\theta)=0, P(\lambda x)=\lambda P(x)(\lambda >0), P(x+y)\leq P(x)+P(y) P(θ)=0,P(λx)=λP(x)(λ>0),P(x+y)≤P(x)+P(y),故为一个次线性泛函
集合C的影响:吸收凸集 ⇔ \Leftrightarrow ⇔ P为实值函数(取值为 [ 0 , ∞ ) [0,\infty) [0,∞));对称凸集( x ∈ C ⇒ − x ∈ C x\in C\Rightarrow -x\in C x∈C⇒−x∈C) ⇒ \Rightarrow ⇒ P(x)为实齐的;均衡凸集( x ∈ C ⇒ α x ∈ C ( ∀ α ∈ C , ∣ α ∣ = 1 ) x\in C\Rightarrow \alpha x \in C(\forall \alpha \in C, |\alpha|=1) x∈C⇒αx∈C(∀α∈C,∣α∣=1)) ⇒ \Rightarrow ⇒ P为半范数;进一步对 B ∗ B^* B∗空间有结论: C = { x ∣ P ( x ) ≤ 1 } C=\{x|P(x)\leq 1\} C={x∣P(x)≤1}
推论:若 C C C为 R n \mathbb{R}^n Rn中的紧凸子集,则必定存在 m ≤ n m\leq n m≤n,使得C同胚于 R m \mathbb{R}^m Rm中的单位球
Brouwer不动点定理:设B是 R n \mathbb{R}^n Rn中的闭单位球, T : B → B T:B\rightarrow B T:B→B连续,则 T T T必定存在一个不动点(推论:任意紧凸集上的变换均可)
推广:无穷维:Schauder不动点定理:设C为 B ∗ B^* B∗空间中的闭凸子集, T : C → C T:C\rightarrow C T:C→C连续且 T ( C ) T(C) T(C)列紧,则T在C上必有不动点
思路:用有穷 ϵ \epsilon ϵ-网的线性组合上定义的映射 I n I_n In来近似恒同映射,并且对限制在该线性组合上的映射 T T T: T n T_n Tn采用Brouwer定理推论即可构造一系列不动点 x n x_n xn,再证明 x n → x x_n\rightarrow x xn→x且 T n x n → T x T_nx_n\rightarrow Tx Tnxn→Tx,从而 x = T x x=Tx x=Tx即为所求
紧映射: E ⊂ X B ∗ E\subset\mathscr{X} B^* E⊂XB∗, T : E → X T:E\rightarrow \mathscr{X} T:E→X是紧的,若其连续且将E中任意有界集合映射为 X \mathscr{X} X中的列紧集
推论: B ∗ B^* B∗空间中有界闭凸子集C上的紧映射必有不动点
内积:(引入夹角相关概念)线性空间 X \mathscr{X} X上的共轭双线性函数 X × X → K \mathscr{X}\times \mathscr{X}\rightarrow \mathbb{K} X×X→K称为一个内积,如果其满足共轭对称性和正定性
由于广义Cauchy不等式,内积可以导出范数: ∣ ∣ x ∣ ∣ = ( x , x ) 1 / 2 ||x||=(x,x)^{1/2} ∣∣x∣∣=(x,x)1/2必为范数,从而得到一个 B ∗ B^* B∗空间且可以证明其严格凸
定理:对于 B ∗ B^* B∗空间 ( X , ∣ ∣ ⋅ ∣ ∣ ) (\mathscr{X},||\cdot||) (X,∣∣⋅∣∣), ∥ ∥ \|\| ∥∥可以诱导如上内积当且仅当其满足平行四边形等式: ∣ ∣ x + y ∣ ∣ 2 + ∣ ∣ x − y ∣ ∣ 2 = 2 ( ∣ ∣ x ∣ ∣ 2 + ∣ ∣ y ∣ ∣ 2 ) ||x+y||^2+||x-y||^2=2(||x||^2+||y||^2) ∣∣x+y∣∣2+∣∣x−y∣∣2=2(∣∣x∣∣2+∣∣y∣∣2)
完备的内积空间称为Hibert空间
有内积后可以定义:正交、正交补、正交集、正交规范集(正交补必定为闭线性空间, S ⊥ = S ‾ ⊥ S^\perp=\overline{S}^\perp S⊥=S⊥)
(子空间的)完备: S ⊂ X , S ⊥ = { θ } S\subset \mathscr{X}, S^\perp=\{\theta\} S⊂X,S⊥={θ}
(正交规范集的)封闭: S ⊂ X S\subset \mathscr{X} S⊂X正交规范,若 ∀ x ∈ X , x \forall x \in \mathscr{X}, x ∀x∈X,x有Fourier分解 x = ∑ ∨ ( x , e α ) e α x=\sum_\vee (x,e_\alpha)e_\alpha x=∑∨(x,eα)eα,则称S封闭
Zorn引理 ⇒ \Rightarrow ⇒一个内积空间必定有完备正交集
Bessel不等式:对于内积空间,若 S = { e α ∣ α ∈ A } S=\{e_\alpha |\alpha \in A\} S={eα∣α∈A}为正交规范集,则 ∑ α ∈ A ∣ ( x , e α ) ∣ 2 ≤ ∣ ∣ x ∣ ∣ 2 \sum_{\alpha \in A} |(x,e_\alpha)|^2\leq ||x||^2 ∑α∈A∣(x,eα)∣2≤∣∣x∣∣2
Bessel等式:对于Hilbert空间,上式取等当且仅当S封闭,当且仅当S完备
使用Schmidt正交化可以将一组线性无关的元素转化为正交规范集
线性同构: T : ( X 1 , ( ⋅ , ⋅ ) 1 ) → ( X 2 , ( ⋅ , ⋅ ) 2 ) T: (\mathscr{X}_1,(\cdot,\cdot)_1)\rightarrow (\mathscr{X}_2,(\cdot,\cdot)_2) T:(X1,(⋅,⋅)1)→(X2,(⋅,⋅)2)为内积空间间的线性同构,若 ( T x , T y ) 2 = ( x , y ) 1 (Tx,Ty)_2=(x,y)_1 (Tx,Ty)2=(x,y)1
可分Hilbert空间的结构:可分 ⇔ \Leftrightarrow ⇔有元素个数可数的正交规范基;当元素个数有限,则同构于 K n \mathbb{K}^n Kn;当无限,则同构于 l 2 l^2 l2
最佳逼近问题:在空间 ( X , ρ ) (\mathscr{X},\rho) (X,ρ)中,给定有限个向量 e i e_i ei,求解问题: min a ∈ K n ∣ ∣ x − ∑ i = 1 n a i e i ∣ ∣ \min_{a\in \mathbb{K}^n} ||x-\sum_{i=1}^n a_ie_i|| mina∈Kn∣∣x−∑i=1naiei∣∣
定理:如果 X \mathscr{X} X B ∗ B^* B∗,则任意元素在任意有限维空间上必定存在最佳逼近元
定理:如果 B ∗ B^* B∗空间严格凸( ∣ ∣ x ∣ ∣ = ∣ ∣ y ∣ ∣ = 1 ⇒ ∣ ∣ α x + ( 1 − α ) y ∣ ∣ < 1 , x ≠ y , ∀ α ∈ [ 0 , 1 ] ||x||=||y||=1\Rightarrow ||\alpha x+(1-\alpha) y||< 1,x\neq y, \forall \alpha \in [0,1] ∣∣x∣∣=∣∣y∣∣=1⇒∣∣αx+(1−α)y∣∣<1,x=y,∀α∈[0,1]),则任意元素在任意有限维空间上最佳逼近元唯一
定理:在Hilbert空间上C是一个闭凸子集,则任意元素在C上最佳逼近元唯一
最佳逼近元的性质:若 x 0 x_0 x0为 y y y的最佳逼近元,则 R e ( y − x 0 , x 0 − x ) ≥ 0 Re(y-x_0,x_0-x)\geq 0 Re(y−x0,x0−x)≥0, ∀ x ∈ C \forall x \in C ∀x∈C;特别地,若C为线性流形,则 y − x 0 ⊥ C − x 0 y-x_0\perp C-x_0 y−x0⊥C−x0
从而根据最佳逼近知Hilbert空间上可以利用逼近元定义线性空间上的唯一正交分解
常见空间:
(欧式空间) ( R n , ρ ) : ρ ( x , y ) = ( ∑ i ( x i − y i ) 2 ) 1 / 2 (\mathbb{R}^n,\rho):\rho(x,y)=(\sum_{i} (x_i-y_i)^2)^{1/2} (Rn,ρ):ρ(x,y)=(∑i(xi−yi)2)1/2 完备且为B空间,定义内积为 ∑ i x i y i \sum_i x_iy_i ∑ixiyi则为内积空间
(有界区间上的连续函数集) ( C [ a , b ] , ρ ) : ρ ( x , y ) = max a ≤ t ≤ b ∣ x ( t ) − y ( t ) ∣ (C[a,b],\rho):\rho(x,y)=\max_{a\leq t\leq b}|x(t)-y(t)| (C[a,b],ρ):ρ(x,y)=maxa≤t≤b∣x(t)−y(t)∣ 完备且为B空间,不严格凸; ( C [ a , b ] , ρ 1 ) : ρ 1 ( x , y ) = ∫ a b ∣ x ( t ) − y ( t ) ∣ d t (C[a,b],\rho_1):\rho_1(x,y)=\int_{a}^{b}|x(t)-y(t)|dt (C[a,b],ρ1):ρ1(x,y)=∫ab∣x(t)−y(t)∣dt 的完备化空间 L 1 [ a , b ] L^1[a,b] L1[a,b]
(空间S)用S表示一切序列 x = ( x 1 , . . . , x n , . . . ) x=(x_1,...,x_n,...) x=(x1,...,xn,...)组成的线性空间, ∥ x ∥ ≜ ∑ i = 1 ∞ 1 2 n ∣ x n ∣ 1 + ∣ x n ∣ \|x\|\triangleq \sum_{i=1}^\infty \frac{1}{2^n} \frac{|x_n|}{1+|x_n|} ∥x∥≜∑i=1∞2n11+∣xn∣∣xn∣为准番薯,则 ( S , ∥ ⋅ ∥ ) (S,\|\cdot \|) (S,∥⋅∥)为F空间
(p次可积函数空间) L p ( Ω , μ ) ( p ≥ 1 ) = { u ∣ ∫ Ω ∣ u ( x ) ∣ p d μ < + ∞ } L^p(\Omega, \mu)(p\geq 1)=\{u|\int_\Omega |u(x)|^p d\mu<+\infty\} Lp(Ω,μ)(p≥1)={u∣∫Ω∣u(x)∣pdμ<+∞},将a.e.相等的元素视为相同,为一个线性空间, ∣ ∣ u ∣ ∣ = ( ∫ Ω ∣ u ( x ) ∣ p d μ ) 1 / p ||u||=(\int_\Omega |u(x)|^p d\mu)^{1/p} ∣∣u∣∣=(∫Ω∣u(x)∣pdμ)1/p为范数(Minkowvski不等式),则 ( L p ( Ω , μ ) , ∥ ⋅ ∥ ) (L^p(\Omega, \mu),\|\cdot \|) (Lp(Ω,μ),∥⋅∥)完备(Riesz-Fisher定理)且为B空间。在p>1时严格凸
特例: L p ( Ω ) L^p(\Omega) Lp(Ω): Ω ⊂ R n \Omega\subset \mathbb{R}^n Ω⊂Rn,测度为Lebesgue测度; l p l^p lp: Ω = N , μ ( { n } ) = 1 \Omega=\mathbb{N}, \mu(\{n\})=1 Ω=N,μ({n})=1,空间由满足 ∑ n = 1 ∞ ∣ u n ∣ p < + ∞ \sum_{n=1}^\infty |u_n|^p<+\infty ∑n=1∞∣un∣p<+∞的序列构成
L ∞ ( Ω , μ ) L^\infty (\Omega ,\mu) L∞(Ω,μ):和有界函数几乎处处相等的可测函数(本性有界可测函数)的集合,范数定义为 ∣ ∣ u ∣ ∣ = inf μ ( E 0 ) = 0 ( sup x ∈ Ω \ E 0 ∣ u ( x ) ∣ ) ||u||=\inf_{\mu(E_0)=0}(\sup_{x\in \Omega \backslash E_0} |u(x)| ) ∣∣u∣∣=infμ(E0)=0(supx∈Ω\E0∣u(x)∣)
仅有p=2时, L 2 ( Ω , μ ) L^2(\Omega,\mu) L2(Ω,μ)为内积空间,其上的内积为 ( u , v ) = ∫ Ω u ( x ) v ( x ) ˉ d μ (u,v)=\int_\Omega u(x)\bar{v(x)}d\mu (u,v)=∫Ωu(x)v(x)ˉdμ,为H空间
(k阶偏导连续函数) Ω ⊂ R n \Omega \subset \mathbb{R}^n Ω⊂Rn为连通有界开区域, C k ( Ω ˉ ) C^k(\bar{\Omega}) Ck(Ωˉ)为在 Ω \Omega Ω上有k阶连续偏导的函数 u ( x ) = u ( x 1 , . . . , x n ) u(x)=u(x_1,...,x_n) u(x)=u(x1,...,xn)的全体, ∥ u ∥ = max ∣ α ∣ ≤ k max x ∈ Ω ˉ ∣ ∂ α u ( x ) ∣ , ∣ α ∣ = α 1 + . . . + α n \|u\|=\max_{|\alpha|\leq k} \max_{x\in \bar{\Omega}}|\partial^\alpha u(x)|, |\alpha|=\alpha_1+...+\alpha_n ∥u∥=max∣α∣≤kmaxx∈Ωˉ∣∂αu(x)∣,∣α∣=α1+...+αn,为范数,则其完备且为B空间;定义内积为 ( u , v ) = ∑ ∣ α ∣ ≤ k ∫ Ω ∂ α u ( x ) ∂ α v ( x ) d x ˉ ˉ (u,v)=\sum_{|\alpha|\leq k}\int_\Omega \partial^\alpha u(x) \bar{\partial ^\alpha v(x)\bar{dx}} (u,v)=∑∣α∣≤k∫Ω∂αu(x)∂αv(x)dxˉˉ,为H空间
(Soblev空间) Ω ⊂ R n \Omega \subset \mathbb{R}^n Ω⊂Rn为连通有界开区域, C m ( Ω ˉ ) C^m(\bar{\Omega}) Cm(Ωˉ)为在 Ω \Omega Ω上有k阶连续偏导的函数 u ( x ) = u ( x 1 , . . . , x n ) u(x)=u(x_1,...,x_n) u(x)=u(x1,...,xn)的全体, ∥ u ∥ m , p = ( ∑ ∣ α ∣ ≤ m ∫ Ω ∣ ∂ α u ( x ) ∣ p d x ) 1 / p , ∣ α ∣ = α 1 + . . . + α n \|u\|_{m,p}=(\sum_{|\alpha|\leq m} \int_\Omega |\partial ^\alpha u(x)|^pdx)^{1/p}, |\alpha|=\alpha_1+...+\alpha_n ∥u∥m,p=(∑∣α∣≤m∫Ω∣∂αu(x)∣pdx)1/p,∣α∣=α1+...+αn,为范数,但不是完备的。依照该范数对子空间 S = { u ∈ C m ( Ω ) ∣ ∥ u ∥ m , p < ∞ } S=\left\{u \in C^{m}(\Omega) \mid\|u\|_{m, p}<\infty\right\} S={u∈Cm(Ω)∣∥u∥m,p<∞}进行完备化,得到的B空间记为 H m , p ( Ω ) H^{m,p}(\Omega) Hm,p(Ω),特别地,当p=2时,记为 H m ( Ω ) H^m(\Omega) Hm(Ω)
(Dirichlet方程(边值为0)的函数集合)Poincare不等式: C 0 m ( Ω ) C_0^m(\Omega ) C0m(Ω)表示在有界开区域 Ω ⊂ R n \Omega\subset \mathbb{R}^n Ω⊂Rn上的一切m次连续可微,且在边界的某邻域中取值为0的函数集合,则 ∃ C ( m , Ω ) , ∀ ∈ C 0 ( Ω ) , ∑ ∣ α ∣ < m ∫ Ω ∣ ∂ α u ( x ) ∣ 2 d x ≤ C ∑ ∣ α ∣ = m ∫ Ω ∣ ∂ α u ( x ) ∣ 2 d x \exists C(m,\Omega), \forall \in C_0(\Omega),\sum_{|\alpha|<m}\int_\Omega |\partial ^\alpha u(x)|^2dx \leq C \sum_{|\alpha|=m} \int_\Omega |\partial ^\alpha u(x)|^2dx ∃C(m,Ω),∀∈C0(Ω),∑∣α∣<m∫Ω∣∂αu(x)∣2dx≤C∑∣α∣=m∫Ω∣∂αu(x)∣2dx
该引理表明仅包含m阶导数范数和包含小于等于m阶导数范数等价,从而设 C 0 m ( Ω ) C_0^m (\Omega) C0m(Ω)按照仅含m阶的范数完备化的空间,记为 H 0 m ( Ω ) H_0^m(\Omega) H0m(Ω),为 H m ( Ω ) H^m(\Omega) Hm(Ω)的一个闭子空间,且其为一个Hilbert空间,内积定义为 ( u . v ) m = ∑ ∣ α ∣ = m ∫ Ω ∂ α u ( x ) ∂ α v ( x ) ˉ d x (u.v)_m=\sum_{|\alpha|=m} \int_\Omega \partial ^\alpha u(x) \bar{\partial^\alpha v(x)} dx (u.v)m=∑∣α∣=m∫Ω∂αu(x)∂αv(x)ˉdx