泛函分析复习笔记(二)线性算子与线性泛函

本文深入探讨了线性算子与线性泛函的概念,包括它们的定义、性质、连续性和有界性。特别讨论了在希尔伯特空间中的连续线性泛函的Riesz表示定理,以及Banach定理和闭映射定理。此外,还介绍了算子的谱理论,包括点谱、连续谱和剩余谱的计算方法,以及对称算子的特性。
摘要由CSDN通过智能技术生成

Chapter 2 线性算子与线性泛函

线性算子:线性空间之间的线性映射: X , Y , D ⊂ X \mathscr{X},\mathscr{Y}, D\subset \mathscr{X} X,Y,DX为线性子空间, T : D → Y , D T:D\rightarrow \mathscr{Y}, D T:DY,D称为T的定义域,记做 D ( T ) D(T) D(T) R ( T ) R(T) R(T)称为值域。若T线性: T ( α x + β y ) = α T x + β T y T(\alpha x+\beta y)=\alpha Tx+\beta Ty T(αx+βy)=αTx+βTy,则称为线性算子

线性泛函:取值于实数/复数的线性算子,记为** f ( x ) f(x) f(x) < f , x > <f,x> <f,x>**(注意内积是圆括号

连续:假设空间 X , Y \mathscr{X},\mathscr{Y} X,Y带有度量( F ∗ F^* F),则线性算子称作连续,若 { x n } ⊂ D ( T ) → x 0 ⇒ T x n → T x 0 \{x_n\}\subset D(T)\rightarrow x_0 \Rightarrow Tx_n\rightarrow Tx_0 { xn}D(T)x0TxnTx0

有界:存在M, ∣ ∣ T x ∣ ∣ Y ≤ M ∣ ∣ x ∣ ∣ X , ∀ x ∈ D ( T ) ||Tx||_\mathscr{Y}\leq M||x||_\mathscr{X},\forall x\in D(T) TxYMxX,xD(T)

定理:连续 ⇔ \Leftrightarrow 有界

有界线性算子集 L ( X , Y ) \mathscr{L}(\mathscr{X},\mathscr{Y}) L(X,Y),定义范数为 ∣ ∣ T ∣ ∣ = sup ⁡ x ∈ X / θ ∣ ∣ T x ∣ ∣ / ∣ ∣ x ∣ ∣ = sup ⁡ ∣ ∣ x ∣ ∣ = 1 ∣ ∣ T x ∣ ∣ ||T||=\sup_{x\in \mathscr{X}/\theta} ||Tx||/||x||=\sup_{||x||=1} ||Tx|| T=supxX/θTx/x=supx=1Tx,自然地可以在其上定义线性运算,且如果 X B ∗ , Y B \mathscr{X} B^*,\mathscr{Y} B XB,YB,则 ( L , ∣ ∣ ⋅ ∣ ∣ ) B (\mathscr{L},||\cdot ||) B (L,)B

Riesz表示定理:Hilbert空间上的连续线性泛函 f f f唯一对应于一个 y f ∈ X y_f\in \mathscr{X} yfX, s.t. f ( x ) = ( x , y f ) f(x)=(x,y_f) f(x)=(x,yf)(相当于对 f f f的零空间做垂直投影内积)

推论:如果为f也引入线性结构,则可以得到对共轭双线性函数用变换内积的表示定理: a ( x , y ) = ( x , A y ) a(x,y)=(x,Ay) a(x,y)=(x,Ay),根据Lax-Milgram定理,如果 ∣ a ( x , y ) ∣ ≤ M ∣ ∣ x ∣ ∣ ∣ ∣ y ∣ ∣ , ∣ a ( x , x ) ∣ ≥ δ ∣ ∣ x ∣ ∣ 2 |a(x,y)|\leq M||x||||y||,|a(x,x)|\geq \delta ||x||^2 a(x,y)Mxy,a(x,x)δx2,则还可以利用Banach定理证明A为有连续逆的连续线性算子,并且 ∣ ∣ A − 1 ∣ ∣ ≤ 1 / δ ||A^{-1}||\leq 1/\delta A11/δ

Radon-Nikodym定理:设 ( Ω , B , μ ) , ( Ω , B , ν ) (\Omega, \mathcal{B}, \mu),(\Omega, \mathcal{B}, \nu) (Ω,B,μ),(Ω,B,ν) 是两个 σ \sigma σ-有限测度,且 ν \nu ν 关于 μ \mu μ 绝对连续, 即 E ∈ B , μ ( E ) = 0 ⇒ ν ( E ) = 0 , E \in \mathcal{B}, \mu(E)=0 \Rightarrow \nu(E)=0, EB,μ(E)=0ν(E)=0,

则存在关于 μ \mu μ 的可测函数 g g g, 且 g ( x ) ⩾ 0 g(x) \geqslant 0 g(x)0 a.e. μ \mu μ, 使得 ν ( E ) = ∫ E g ( x ) d μ , ∀ E ∈ B \nu(E)=\int_{E} g(x) \mathrm{d} \mu, \forall E \in \mathcal{B} ν(E)=Eg(x)dμ,EB

线性算子求逆:

疏集 E ⊂ ( X , ρ ) E\subset (\mathscr{X},\rho) E(X,ρ)称为疏集,若 E ˉ o = ∅ \bar{E}^o=\empty Eˉo= ⇔ \Leftrightarrow 对任意球,存在子闭球和 E ˉ \bar{E} Eˉ的交为空

第一纲集:疏集的可列并 第二纲集:非第一纲集

Baire定理完备度量空间必为第二纲集(思路:每个球都必然有子球与疏集无交=>构造球列)

T的性质与逆的关系

T T T为单射,则逆运算在 R ( T ) R(T) R(T)上存在;若 T T T为满射,则逆运算 T − 1 ∈ L ( Y , X ) T^{-1} \in \mathscr{L}(\mathscr{Y},\mathscr{X}) T1L(Y,X)

Banach定理 T ∈ L ( X , Y ) T \in \mathscr{L}(\mathscr{X},\mathscr{Y}) TL(X,Y)为双射且 X , Y B \mathscr{X},\mathscr{Y} B X,YB ⇒ T − 1 ∈ L ( Y , X ) \Rightarrow T^{-1}\in \mathscr{L}(\mathscr{Y},\mathscr{X}) T1L(Y,X)

开映射定理:只要 T T T是满射, T T T就是开映射任意开集的像为开集

思路: Y = ∪ i = 1 ∞ T U ( θ , i ) \mathscr{Y}=\cup_{i=1}^\infty TU(\theta ,i) Y=i=1TU(θ,i),则由于完备=>第二纲=>存在i,使得 T U ( θ , i ) TU(\theta,i) TU(θ,i)非疏,不妨设i=1=>闭包有内点,由对称性 θ \theta θ也为内点=>对 y ∈ U ( θ , δ ) y\in U(\theta,\delta) yU(θ,δ)做逐次逼近,使得证明 y y y的任何原像 x ∈ U ( θ , 1 ) x\in U(\theta ,1) xU(θ,1),则 U ( θ , δ ) ⊂ T U ( θ , 1 ) U(\theta, \delta)\subset TU(\theta,1) U(θ,δ)TU(θ,1),从而命题得证

特别的,若T为单射,有 T − 1 ≤ 1 / δ T^{-1}\leq 1/\delta T11/δ

在证明过程中有两处可以放宽要求:一个是只要像集为第二纲集,另一个逐次逼近的收敛只需要 D ( T ) D(T) D(T)为闭算子而无需 T T T有界(连续)

闭算子:线性算子 T T T { x n } ⊂ D ( T ) , x n → x , T x n → y ⇒ x ∈ D ( T ) , y = T x \{x_n\}\subset D(T), x_n\rightarrow x, Tx_n\rightarrow y\Rightarrow x\in D(T), y=Tx { xn}D(T),xnx,TxnyxD(T),y=Tx定义域不一定要是闭的

广义开映射定理:只要 T T T是闭线性算子, R ( T ) R(T) R(T)是第二纲集,就有 T T T为满射和开映射

连续性和闭性的关联

事实上,如果闭算子的定义域是闭的,则其为连续算子

推论:任何一个映射到 Y \mathscr{Y} Y的连续线性算子都可以将 R ( T ) R(T) R(T)延拓到 R ( T ) ˉ \bar{R(T)} R(T)ˉ

等价范数定理:如果线性空间 X \mathscr{X} X关于两个范数都Banach,且一个比另一个强,则其必定等价

共鸣定理(一致有界定理):如果 X B , Y B ∗ \mathscr{X}B,\mathscr{Y}B^* XB,YB L ( X , Y ) \mathscr{L}(\mathscr{X},\mathscr{Y}) L(X,Y)的子集 W W W满足 ∀ x ∈ X , sup ⁡ A ∈ W ∣ ∣ A x ∣ ∣ ≤ ∞ \forall x \in \mathscr{X}, \sup_{A\in W} ||Ax||\leq \infty xX,supAWAx,则存在常数M, ∣ ∣ A ∣ ∣ ≤ M , ∀ A ||A||\leq M,\forall A AM,A(点点有界蕴含一致有界)

Banach-Steinhaus定理:如果 X B , Y B ∗ \mathscr{X}B,\mathscr{Y}B^* XB,YB, M M M X \mathscr{X} X 的某个稠密子集. 若 A n ( n = 1 , 2 , ⋯   ) , A ∈ A_{n}(n=1,2, \cdots), A \in An(n=1,2,),A L ( X , Y ) \mathscr{L}(\mathscr{X}, \mathscr{Y}) L(X,Y), 则 ∀ x ∈ X \forall x \in \mathscr{X} xX 都有 lim ⁡ n → ∞ A n x = A x \lim _{n \rightarrow \infty} A_{n} x=A x limnAnx=Ax当且仅当:(1) ∥ A n ∥ \left\|A_{n}\right\| An 有界 (2)原式对 ∀ x ∈ M \forall x \in M xM 成立

线性泛函的延拓与凸集分离

实 Hahn-Banach 定理:设 X \mathscr{X} X 是实线性空间, p p p 是定义在 X \mathscr{X} X 上的次线性泛函, X 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值