Scala的rdd透析

一、RDD的概述

  1. 什么是RDD?

    • RDD(Resilient Distributed Datasets) [1] ,弹性分布式数据集, 是分布式内存的一个抽象概念,RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,只能通过在其他RDD执行确定的转换操作(如map、join和group by)而创建,然而这些限制使得实现容错的开销很低。对开发者而言,RDD可以看作是Spark的一个对象,它本身运行于内存中,如读文件是一个RDD,对文件计算是一个RDD,结果集也是一个RDD ,不同的分片、 数据之间的依赖 、key-value类型的map数据都可以看做RDD。
  2. RDD的属性

    • (1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。

    • (2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。

    • (3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

    • (4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。

    • (5)一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。

二、RDD的创建方式

  1. 通过读取文件生成的由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集。
scala> val rdd1 = sc.textFile("fileaddress")
scala> rdd1.collect
  1. 通过并行化的方式创建RDD由一个已经存在的Scala集合创建。
scala> val rdd2 = sc.parallelize(Array(1,2,3,4,5))
scala> rdd2.collect
  1. 其他方式读取数据库等等其他的操作也可以生成RDD,RDD可以通过其他的RDD转换而来的。
### 使用ScalaRDD实现PageRank算法 #### 初始化环境并加载数据 为了在Apache Spark中使用ScalaRDD实现PageRank算法,首先需要设置Spark环境,并加载表示Web图的数据集。该数据集由顶点对组成,这些顶点通过边连接[^1]。 ```scala import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} val conf = new SparkConf().setAppName("PageRank").setMaster("local[*]") val sc = new SparkContext(conf) // Load URLs into lines and split each line into an array of source and destination nodes. val lines: RDD[String] = sc.textFile("data/pagerank_data.txt") val links: RDD[(Long, Iterable[Long])] = lines.map { s => val parts = s.split("\\s+") (parts(0).toLong, parts(1).toLong) }.distinct().groupByKey().cache() ``` #### 设置初始参数 初始化PageRank分数为`1 / N`,其中N是节点总数。定义迭代次数和其他必要的超参数来控制计算过程[^4]。 ```scala var ranks: RDD[(Long, Double)] = links.mapValues(v => 1.0 / numVertices) val iterations = 10 val d = 0.85 // damping factor ``` #### 迭代更新PageRank值 对于每一次迭代,基于链接结构重新分配当前页面的排名得分给指向它的其他页面;随后调整新的排名向量以反映阻尼效应的影响[^3]。 ```scala for (i <- 1 to iterations) { val contributions: RDD[(Long, Double)] = links.join(ranks).values.flatMap { case (urls, rank) => val size = urls.size urls.map(url => (url, rank / size)) } ranks = contributions.reduceByKey(_ + _).mapValues(rank => (1 - d) + d * rank) } ``` #### 输出最高评分的结果 完成所有预定轮次之后,可以收集前几名具有最高PageRank分值的条目作为最终输出结果。 ```scala val output = ranks.collect().sortBy(-_._2).take(10) output.foreach(tup => println(s"${tup._1} has rank: ${tup._2}.")) sc.stop() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值