棋盘覆盖--分治法

问题:

在一个2^k×2^k (k≥0)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为特殊方格。显然,特殊方格在棋盘中可能出现的位置有4^k种,因而有4^k种不同的棋盘,棋盘覆盖问题(chess cover problem)要求用L型骨牌覆盖给定棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。


思路:分治法

每次将棋盘分成四等份,特殊方格一定在其中一份里,其余三份中按照图中方法添加一块L型骨牌,因此,四份中都存在特殊方格;按此方法,递归求解即可解除。

代码:

#include<cstdio>
const int maxn = 32+2;
int Board[maxn][maxn];
int tile = 0;

void ChessBoard(int tr,int tc,int dr,int dc,int size){
	if(size <= 1)return ;
	int s = size/2;
	int t = ++tile;
	
	//覆盖左上角 
	if(dr<s+tr && dc<s+tc){
		ChessBoard(tr,tc,dr,dc,s);
	}
	else{
		Board[tr+s-1][tc+s-1] = t;
		ChessBoard(tr,tc,tr+s-1,tc+s-1,s);
	}
	
	//覆盖右上角
	 if(dr<s+tr && dc>=s+tc){
	 	ChessBoard(tr,tc+s,dr,dc,s);
	 }
	 else{
	     Board[tr+s-1][tc+s]=t;
		 ChessBoard(tr,tc+s,tr+s-1,tc+s,s); 
	 } 
	 
	 //左下角
	 if(dr>=s+tr && dc<s+tc){
	 	ChessBoard(tr+s,tc,dr,dc,s);
	 } 
	 else {
	 	Board[tr+s][tc+s-1]=t;
	 	ChessBoard(tr+s,tc,tr+s,tc+s-1,s);
	 }
	 
	 //右下角
	 if(dr>=tr+s && dc>=tc+s){
	 	ChessBoard(tr+s,tc+s,dr,dc,s);
	 } 
	 else{
	 	Board[tr+s][tc+s]=t;
	 	ChessBoard(tr+s,tc+s,tr+s,tc+s,s);
	 }
}


int main(){
    Board[0][0] = 0;
    printf("请输入特殊方格最初位置:\n");
    int dr,dc;
    scanf("%d%d",&dr,&dc);
	ChessBoard(0,0,dr,dc,16);
	for(int i = 0; i < 16; i++){
		for(int j = 0; j < 16; j++){
			printf("%3d",Board[i][j]);
		}
		printf("\n");
	}	
	return 0;
}

输出:



二级残缺棋盘覆盖问题是指在一个大小为2^n x 2^n的棋盘中,去掉其中一个格子后,如何使用L型骨牌(一种覆盖三个方格的L形图案)将剩下的格子完全覆盖,且每个L型骨牌不重叠、不遗漏地覆盖棋盘中的三个方格。 该问题可以使用分治算法解决。具体思路为: 1. 对于当前的残缺棋盘,找到其中任意一个空白格子,并以该空白格子为中心,将整个棋盘分成四个大小相等的子棋盘,其中包含三个L型骨牌覆盖的方案。 2. 在上述四个子棋盘中,选取其中一个仍然是残缺的子棋盘,重复步骤1,直到所有的空白格子都被L型骨牌覆盖。 以下是C语言的分治算法代码实现,其中board数组代表棋盘,size表示当前棋盘大小,x和y表示当前空白格子的坐标。 ``` #include <stdio.h> #define MAXN 1024 int board[MAXN][MAXN]; int cnt = 0; void chessboard(int tr, int tc, int dr, int dc, int size, int x, int y) { if (size == 1) return; // 递归结束条件 int t = ++cnt; int s = size / 2; // 当前空白格子在左上角子棋盘中 if (x < tr + s && y < tc + s) { chessboard(tr, tc, tr + s - 1, tc + s - 1, s, x, y); } else { board[tr + s - 1][tc + s - 1] = t; // 其他三个子棋盘 chessboard(tr, tc, tr + s - 1, tc + s - 1, s, tr + s - 1, tc + s - 1); chessboard(tr, tc + s, tr + s - 1, tc + s, s, tr + s - 1, tc + s); chessboard(tr + s, tc, tr + s, tc + s - 1, s, tr + s, tc + s - 1); chessboard(tr + s, tc + s, dr, dc, s, tr + s, tc + s); } } int main() { int n = 8; // 棋盘大小为2^n x 2^n int x = 6; // 空白格子坐标 int y = 5; board[x][y] = -1; chessboard(0, 0, n-1, n-1, n, x, y); // 分治算法 for (int i=0; i<n; i++) { for (int j=0; j<n; j++) { printf("%3d", board[i][j]); } printf("\n"); } return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柏油

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值