介绍
本文简要介绍了Trie(即前缀树)数据结构,其实现和复杂度分析。
前缀树Trie
trie是一种离散的数据结构,在典型的算法数据结构中并不十分知名或被广泛提及,但仍然是一个重要的结构。
trie(也称为字典树),有时甚至是基数树或前缀树(因为它们可以通过前缀搜索),是一种有序的树结构,它利用了它存储的键,本文假设是字符串。
节点在树中的位置定义了与该节点关联的键,这与二叉搜索树相比有所不同,其中节点存储仅对应于该节点的键。
一个节点的所有后代都有一个与该节点关联的字符串的公共前缀,而根与一个空字符串相关联。
这里我们有一个TrieNode的预览,我们将在我们的Trie实现中使用它:
type TrieNode struct {
children map[string]*TrieNode
value string
end bool
}
func NewTrieNode(e string) *TrieNode {
ret := make(map[string]*TrieNode)
return &TrieNode{
children: ret,
value: e,
end: true,
}
}
可能存在trie是二叉搜索树的情况,但总的来说,这些情况是不同的。二叉搜索树和前缀树都是树,但是二叉搜索树中的每个节点总是有两个孩子,而前缀树的节点可以有更多。
在trie中,每个节点(根节点除外)都存储一个字符或一个数字。通过从根节点向下遍历trie到特定节点n,可以形成字符或数字的公共前缀,该前缀也由trie的其他分支共享。
通过从叶子节点到根节点遍历树,可以形成一个字符串或一个数字序列。
这是Trie结构体,它表示trie数据结构的实现:
type Trie struct {
sync.RWMutex
root *TrieNode
}
func NewTrie() *Trie {
return &Trie{
root: &TrieNode{
children: make(map[string]*TrieNode),
},
}
}
常见操作
现在,让我们看看如何实现基本操作。
插入
我们将描述的第一个操作是插入新节点。在我们开始实现之前,了解算法很重要:
- 将当前节点设置为根节点
- 将当前字母设置为单词的第一个字母
- 如果当前节点已经存在对当前字母的引用(通过children字段中的元素之一),则将当前节点设置为该引用节点。否则,创建一个新节点,设置字母等于当前字母,并将当前节点初始化为这个新节点
- 重复第3步,直到找到key
该算法的复杂度为O(n),其中n表示key大小。
下面是这个算法的实现:
// Insert a node into trie, the complexity of this operation is O(n),
// where n represents the key size.
func (t *Trie) Insert(word string) {
t.Lock()
defer t.Unlock()
current := t.root
for i := 0; i < len(word); i++ {
if child, ok := current.children[string(word[i])]; ok {
current = child
} else {
current.children[string(word[i])] = NewTrieNode(string(word[i]))
current = current.children[string(word[i])]
}
}
current.end = true
}
搜索
现在让我们添加一个方法来搜索特定元素是否已经存在于trie中:
- 获取根的children
- 遍历字符串的每个字符
- 检查该字符是否已经是子树的一部分。如果它不存在于trie中的任何位置,则停止搜索并返回false
- 重复第二步和第三步,直到字符串中没有任何字符。如果到达string的末尾,则返回 true
该算法的复杂度为O(n),其中n表示key的长度。
// Search a node in trie and return true or false, the complexity
// of this algorithm is O(n), where n represents the length of the key.
func (t *Trie) Search(word string) bool {
t.Lock()
defer t.Unlock()
current := t.root
for i := 0; i < len(word); i++ {
node := current.children[string(word[i])]
if node == nil {
return false
}
current = node
}
return current.end
}
删除
除了插入和查找元素之外,很明显我们还需要能够删除元素。对于删除过程,我们需要按照以下步骤操作:
检查这个元素是否已经是trie的一部分
如果找到该元素,则将其从trie中删除
该算法的复杂度为O(n),其中n表示key的长度。让我们快速看一下实现:
// Delete a node from trie, the complexity of this algorithm is O(n),
// where n represents the length of the key.
func (t *Trie) Delete(word string) {
t.Lock()
defer t.Unlock()
_ = deleteNode(t.root, word, 0)
}
// deleteNode a node from specific node in trie
func deleteNode(cur *TrieNode, word string, index int) bool {
if index == len(word) {
if !cur.end {
return false
}
cur.end = false
return len(cur.children) == 0
}
node := cur.children[string(word[index])]
if node == nil {
return false
}
shouldDeleteCurrentNode := deleteNode(node, word, index+1) && !node.end
if shouldDeleteCurrentNode {
delete(cur.children, string(word[index]))
return len(cur.children) == 0
}
return false
}
前缀匹配
在leetcode.208.实现 Trie (前缀树)中,特别定义了StartsWith方法。如果之前已经插入的字符串word的前缀之一为prefix,返回true;否则,返回false。这只需要在搜索方法基础上改动些许即可,当遍历待匹配的字符串结束后,我们直接返回true。
// StartsWith returns true if there is a previously inserted string word
// that has the prefix, and false otherwise.
func (t *Trie) StartsWith(prefix string) bool {
current := t.root
for i := 0; i < len(prefix); i++ {
node, ok := current.children[string(prefix[i])]
if !ok {
return false
}
current = node
}
return true
}
leetcode.208.实现 Trie (前缀树)题解
这里也给出该题的题解:
type Trie struct {
root *TrieNode
}
func NewTrieNode(e string) *TrieNode {
ret := make(map[string]*TrieNode)
return &TrieNode{
children: ret,
value: e,
end: false,
}
}
type TrieNode struct {
children map[string]*TrieNode
value string
end bool
}
func Constructor() Trie {
return Trie{
root: &TrieNode{
children: make(map[string]*TrieNode),
},
}
}
func (t *Trie) Insert(word string) {
current := t.root
for i := 0; i < len(word); i++ {
if current.children == nil {
current.children = make(map[string]*TrieNode)
}
if child, ok := current.children[string(word[i])]; ok {
current = child
} else {
current.children[string(word[i])] = NewTrieNode(string(word[i]))
current = current.children[string(word[i])]
}
}
current.end = true
}
func (t *Trie) Search(word string) bool {
current := t.root
for i := 0; i < len(word); i++ {
node := current.children[string(word[i])]
if node == nil {
return false
}
current = node
}
return current.end
}
func (t *Trie) StartsWith(word string) bool {
current := t.root
for i := 0; i < len(word); i++ {
node := current.children[string(word[i])]
if node == nil {
return false
}
current = node
}
return true
}