浅浅对1/R做拉普拉斯运算的思考~

  日常在看到《电磁场与电磁波》时发现了这样一个等式:

\triangledown^{2}\left ( 1/R \right )=-4\pi \delta \left ( r-r' \right )

  当时想了良久也没啥思路,在网上搜索也只有一些我个人觉得很复杂的方法……(也有可能是我太菜了呜呜)所以问了大佬~大概有了些思路,想借此机会分享给大家。

  因为很菜所以别介意,如果方法有任何问题欢迎讨论呜呜呜

  第一个想法就是散度定理,先看成如下的形式:

\triangledown \cdot \triangledown \left ( 1/R \right )= -4\pi \delta \left ( r-r' \right )

  因为

\triangledown \left ( 1/R \right )=-\underset{R}{\rightarrow}/R^{3}

所以式子就变成了

\triangledown \left ( -\underset{R}{\rightarrow} /R^{3}\right )

接下来用到散度定理,就可以把他变成对曲面积分的形式,即

\oint \underset{R}{\rightarrow}/R^{3}dS=\oint 1/R^{2}dS=\oint 1/R^{2}\cdot R^{2}d\theta d\varphi =\int_{0}^{\pi }\int_{0}^{2\pi}sin\theta d\theta d\varphi

这个算下来就是4\pi,但是因为前面有负号,就是-4\pi,下来就是\delta函数的问题了,我们可以把它理解成一个球面,那么这个\delta函数就是在源点处会有一个冲激,也就是说它只会在源点处产生-4\pi,(毕竟是个点电荷www),所以这个就可以证明出来;

还有个方法也很巧妙,看某位知乎大佬评论区所言,但我可能理解的不是那么深刻。

就是根据电磁场的泊松方程:\triangledown ^{2}\varphi =-\rho /\varepsilon,将\varphi变为1/R,\rho作为电荷密度就可以写为q\delta \left ( r-r' \right )的形式,最后改变写来就写成了:

\triangledown ^{2}\left ( 1/R^{} \right )=-q\delta \left ( r-r' \right )/\varepsilon=-4\pi\delta \left ( r-r' \right )

所得到的结果也就是等号右边。

如果有帮助就好啦~~

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值