【动态规划】01背包问题(手画图解)

        经典dp动规问题,01背包问题关键在于遍历顺序与初始化这两步的推导。

目录

文章目录

一、01背包问题

二、确定dp数组及其下标含义

三、确定递推公式

四、确定初始化

 五、确定遍历顺序

六、举例推导dp数组

总结



 

一、01背包问题

        有n件物品,每件的价值与重量限制了背包所能装的总价值,每件物品只有一个,求所能装的最大价值。

二、确定dp数组及其下标含义

        dp[i][j]代表的是:

        从0-i的物品中选,放入容量为j的背包中所得的最大价值。

三、确定递推公式

        现态dp[i][j]有两种情况:容量j够放物品 + 容量j不够放物品 。

        显而易见的是:

        ①当不够放物品时,背包中的价值并不会增加,仍然停留在拿取上一个物品(i-1)的总价值(dp[i-1][j] + 0)上; 

        ②当还能放得下物品时,就需要判断放了这个物品和不放这两种情况谁获得的最终价值更大;

                1.放第i件物品价值大时:需要在容量(j - weight[i])上减去所放进去的第i件物品的重量,价值(上一件物品留下的价值:dp[i-1][j])上加上第i件物品的价值(dp[i-1][j] + value[i])

                        第1点综合起来便是:dp[i-1][j - weight[i]] + value[i];

                2.不放第i件物品价值大时:与①的情况相同,都是没有将第i件物品放进去。

                                第2点便是:dp[i][j] = dp[i-1][j];

图解如下图: 

 


四、确定初始化

        由递推公式可知:每一行(i)的数据都是由上一行([i-1][j]或者[i-1][j-weight[i]])得到的,也即:每一元素数据的来源是上方或者是左上方,所以我们需要得到最上方一行的初始化数据与最左边一行的数据。

         题外话:当然,这是从科学的角度进行的思考,如果不这么严谨的话,我们至少可以得到:当容量为0时,所获总价值一定为0(背包放不下东西)。

        首先从背包容量进行考虑:

        ①当容量为0时,所获总价值一定为0(背包放不下东西);

        ②当容量能够放得下物品[0,0](j >= weight[0] = 1)时,可以得到的最大价值就是value[0](15);

图解如下:

 五、确定遍历顺序

        由递推公式可知:

        我们需要得到上一行的数据即可进行递推。

        ①从左到右,从上到下;②或者从上到下, 然后从左到右;两种遍历顺序都可以得到所求数据上一行的所有数据,都可以进行递推。

图解如下: 

 

六、举例推导dp数组

图解如下:  

        

 

七、代码实现

#include <iostream>
#include <vector>
using namespace std;

void BagSolution()
{
	vector <int>value = { 15,20,30 };
	vector <int>weight = { 1,3,4 };
	int bagWeight = 4;
	// 列多出来容量为0的那列
	vector <vector<int>> dp(weight.size(), vector <int>(bagWeight + 1, 0));
	// 初始化--容量为0所能放的价值一定为0
	for (int i = 0; i < weight.size(); i++)
	{
		dp[i][0] = 0;
	}
	// 当容量能放下下标为0物品(最小重量)时,最大价值就是value[0]
	for (int j = 0; j <= bagWeight; j++)
	{
		if (j >= weight[0])
		{
			dp[0][j] = value[0];
		}
	}
	//确定遍历顺序
	for (int i = 1; i < weight.size(); i++)
	{
		for (int j = 1; j <= bagWeight; j++)
		{
			// 容量不够放,第i件物品就不放
			if (j < weight[i])
			{
				dp[i][j] = dp[i - 1][j];
			}
			// 够放->比较拿了大还是不拿大
			else
			{
				dp[i][j] = max(dp[i-1][j], dp[i - 1][j - weight[i]] + value[i]);
			}
		}
	}
	// 打印dp
	for (int i = 0; i < weight.size(); i++)
	{
		for (int j = 0; j <= bagWeight; j++)
		{
			printf("%2d ", dp[i][j]);
		}
		cout << endl;
	}
}

int main()
{
	BagSolution();
	return 0;
}

运行截图:

 

总结

        01背包问题是所有背包问题的根本所在,掌握好dp五部曲,明确dp及其下标含义,勤加练习是制胜之道!

  • 10
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
动态规划01背包问题是一种经典的组合优化问题。在这个问题中,给定一组物品,每个物品具有自己的重量和价值,并且有一个背包的容量上限。目标是选择一些物品放入背包中,使得背包中物品的总价值最大,同时不能超过背包的容量上限。这个问题的名称来源于每个物品只能选择装入背包一次(01)的约束条件。 解决动态规划01背包问题通常使用一个二维数组dp来表示状态。其中dp[i][j]表示在前i个物品中,在背包容量为j的情况下,背包中物品的最大总价值。通过分析,我们可以得到状态转移方程: 1. 若第i个物品不放入背包,则dp[i][j] = dp[i-1][j]; 2. 若第i个物品放入背包,则dp[i][j] = dp[i-1][j-w[i]] + v[i],其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。 最终求解的目标是dp[N][W],即在N件物品中,背包容量为W的情况下,背包中物品的最大总价值。通过填充dp数组,可以逐步求解得到最优解。 需要注意的是,这个问题的解法是基于动态规划的思想,它的时间复杂度为O(NW),其中N表示物品的个数,W表示背包的容量。这种解法在物品个数较小、背包容量较大时效果较好。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [动态规划背包问题之01背包详解](https://blog.csdn.net/weixin_53051813/article/details/125815935)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [动态规划01背包问题](https://blog.csdn.net/CY2333333/article/details/117621356)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值