经典dp动规问题,01背包问题关键在于遍历顺序与初始化这两步的推导。
目录
一、01背包问题
有n件物品,每件的价值与重量限制了背包所能装的总价值,每件物品只有一个,求所能装的最大价值。
二、确定dp数组及其下标含义
dp[i][j]代表的是:
从0-i的物品中选,放入容量为j的背包中所得的最大价值。
三、确定递推公式
现态dp[i][j]有两种情况:容量j够放物品 + 容量j不够放物品 。
显而易见的是:
①当不够放物品时,背包中的价值并不会增加,仍然停留在拿取上一个物品(i-1)的总价值(dp[i-1][j] + 0)上;
②当还能放得下物品时,就需要判断放了这个物品和不放这两种情况谁获得的最终价值更大;
1.放第i件物品价值大时:需要在容量(j - weight[i])上减去所放进去的第i件物品的重量,价值(上一件物品留下的价值:dp[i-1][j])上加上第i件物品的价值(dp[i-1][j] + value[i])。
第1点综合起来便是:dp[i-1][j - weight[i]] + value[i];
2.不放第i件物品价值大时:与①的情况相同,都是没有将第i件物品放进去。
第2点便是:dp[i][j] = dp[i-1][j];
图解如下图:
四、确定初始化
由递推公式可知:每一行(i)的数据都是由上一行([i-1][j]或者[i-1][j-weight[i]])得到的,也即:每一元素数据的来源是上方或者是左上方,所以我们需要得到最上方一行的初始化数据与最左边一行的数据。
题外话:当然,这是从科学的角度进行的思考,如果不这么严谨的话,我们至少可以得到:当容量为0时,所获总价值一定为0(背包放不下东西)。
首先从背包容量进行考虑:
①当容量为0时,所获总价值一定为0(背包放不下东西);
②当容量能够放得下物品[0,0](j >= weight[0] = 1)时,可以得到的最大价值就是value[0](15);
图解如下:
五、确定遍历顺序
由递推公式可知:
我们需要得到上一行的数据即可进行递推。
①从左到右,从上到下;②或者从上到下, 然后从左到右;两种遍历顺序都可以得到所求数据上一行的所有数据,都可以进行递推。
图解如下:
六、举例推导dp数组
图解如下:
七、代码实现
#include <iostream>
#include <vector>
using namespace std;
void BagSolution()
{
vector <int>value = { 15,20,30 };
vector <int>weight = { 1,3,4 };
int bagWeight = 4;
// 列多出来容量为0的那列
vector <vector<int>> dp(weight.size(), vector <int>(bagWeight + 1, 0));
// 初始化--容量为0所能放的价值一定为0
for (int i = 0; i < weight.size(); i++)
{
dp[i][0] = 0;
}
// 当容量能放下下标为0物品(最小重量)时,最大价值就是value[0]
for (int j = 0; j <= bagWeight; j++)
{
if (j >= weight[0])
{
dp[0][j] = value[0];
}
}
//确定遍历顺序
for (int i = 1; i < weight.size(); i++)
{
for (int j = 1; j <= bagWeight; j++)
{
// 容量不够放,第i件物品就不放
if (j < weight[i])
{
dp[i][j] = dp[i - 1][j];
}
// 够放->比较拿了大还是不拿大
else
{
dp[i][j] = max(dp[i-1][j], dp[i - 1][j - weight[i]] + value[i]);
}
}
}
// 打印dp
for (int i = 0; i < weight.size(); i++)
{
for (int j = 0; j <= bagWeight; j++)
{
printf("%2d ", dp[i][j]);
}
cout << endl;
}
}
int main()
{
BagSolution();
return 0;
}
运行截图:
总结
01背包问题是所有背包问题的根本所在,掌握好dp五部曲,明确dp及其下标含义,勤加练习是制胜之道!