导数

本文深入探讨了向量的导数概念,包括矩阵与向量的乘法,以及导数的计算。此外,还介绍了最小二乘法在解决线性方程组问题中的应用。
摘要由CSDN通过智能技术生成

向量的导数

A A A m × n m \times n m×n的矩阵, x x x n × 1 n \times 1 n×1的列向量,则 A x Ax Ax m × 1 m \times 1 m×1的列向量,记作 y ⃗ = A ⋅ x ⃗ \vec y = A \cdot \vec x y =Ax

A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ]   x ⃗ = [ x 1 x 2 ⋮ x n ]   y ⃗ = A ⋅ x ⃗ = [ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n ] A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \\ ~ \\ \vec x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \\ ~ \\ \vec y = A \cdot \vec x = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix} A=a11a21am1a12a22am2a1na2namn x =x1x2xn y =Ax =a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn

∂ y ⃗ ∂ x ⃗ = ∂ A ⋅ x ⃗ ∂ x ⃗ = [ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n x 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n x 1 ⋯ a m 1 x 1 + a 1 m 2 x 2 + ⋯ + a m n x 1 x 1 a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n x 2 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n x 2 ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n x 2 ⋮ ⋮ ⋮ ⋮ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n x n a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n x n ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n x n ]   = [ a 11 a 21 ⋯ a m 1 a 12 a 22 ⋯ a m 2 ⋮ ⋮ ⋮ ⋮ a 1 n a 2 n ⋯ a m n ] = A T \frac{\partial \vec y}{\partial \vec x} = \frac{\partial A \cdot \vec x}{\partial \vec x} = \begin{bmatrix} \frac{a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n}{x_1} & \frac{a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n}{x_1} & \cdots & \frac{a_{m1}x_1 + a_{1m2}x_2 + \cdots + a_{mn}x_1}{x_1}\\ \frac{a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n}{x_2} & \frac{a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n}{x_2} & \cdots & \frac{a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n}{x_2}\\ \vdots & \vdots & \vdots& \vdots \\ \frac{a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n}{x_n} & \frac{a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n}{x_n} & \cdots & \frac{a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n}{x_n}\\ \end{bmatrix} \\ ~ \\ = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix} = A^T x y =x Ax =x1a11x1+a12x2++a1nxnx2a11x1+a12x2++a1nxnxna11x1+a12x2++a1nxnx1a21x1+a22x2++a2nxnx2a21x1+a22x2++a2nxnxna21x1+a22x2++a2nxnx1am1x1+a1m2x2++amnx1x2am1x1+am2x2++amnxnxnam1x1+am2x2++amnxn =a11a12a1na21a22a2nam1am2amn<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值