导数的定义
设函数y=f(x)在点x。某个领域内有定义,当自变量x在x。处取得增量▵x(点x。,▵x仍在定义域> 范围内),相应的因变量取得增量▵y = f(x。+▵x)-f(x。),
如果▵y与▵x之比当▵x->0时的极限存在
,> 那么称函数y=f(x)在点x。处可导,并称这个极限为函数y=f(x)在点x。处的导数,记为f‘(x。),>即:
f‘(x。) = lim(▵x->0)▵y/▵x = lim(x->0) f(x。+▵x)-f(x。)/▵x
,也可记作:y’|x=x。,dy/dx|x=x。
导数的求导法则
定理1:
如果函数u=u(x)及v=v(x)都在点x具有导数,那么它们的和、差、商、积都在x具有导数,且:
1、[u(x)±v(x)]’ = u'(x)+v'(x)
2、[u(x)v(x)]’ = u'(x)v(x)+ u(x)v'(x)
3、[u(x)/v(x)]’ = (u'(x)v(x)- u(x)v'(x))/v^2(x)(v(x)≠0)
证1(lim▵x0->0):
[u(x)±v(x)]’
=(u(x-▵x)±v(x-▵x))-(u(x)±v(x))/▵x
=(u(x-▵x)-u(x))/▵x ± (v(x-▵x)-v(x))/▵x
=u’(x)±v’(x)
证2(lim▵x0->0):
[u(x) v(x)]’
=(u(x+▵x) v(x+▵x))-(u(x) v(x))/▵x
=v(x+▵x)(u(x+▵x)-u(x))/▵x
+ u(x+▵x)(v(x+▵x)-v(x))/▵x
=u’(x)v(x)+ u(x)v’(x)
证3(lim▵x0->0):
[u(x) / v(x)]’
=(u(x+▵x) /v(x+▵x))-(u(x) / v(x))/▵x
=(u(x+▵x) v(x)-v(x+▵x)u(x) )/(v(x)v(x+▵x)▵x)
=(u(x+▵x)v(x)-v(x)u(x)
-ux(v(x+▵x)-v(x)
)/▵x
/(v(x)v(x+▵x)
=(u’(x)v(x)+ u(x)v’(x))/(v(x)v(x+▵x)
=(u’(x)v(x)+ u(x)v’(x))/v^2(x)
定理2:
>如果函数x=f(y)在区间Iy内单调、可导且f‘(y)≠0
,那么它的反函数y=f-1(x)在区间Ix={x|x=f(y),y∈Iy}内也可导,则:
>[f-1(x)] = 1/f’(y) 即:反函数的导数等于直接函数导数的倒数
定理3:
>如果u=g(x)在点x可导,而y=f(u)在点u=g(x)可导,那么符合函数y=f[g(x)]在点x可导,且其导数为:
dy/dx=f'(u) * g'(x)
定理2举例:
y=(arcsinx),Ix∈(-π/2,π/2)求其导数:
∵y=(arcsinx),则x=sin(y),
∵sin(y)’=cos(y),且y=(sinx)在Ix∈(-π/2,π/2)单调可导,cos(y)≠0,
根据定理2得:
y=(arcsinx)‘=1/cos(y)=1/√(1-sinx^2)=1/√1-x ^2 (Ix∈(-π/2,π/2))
定理3举例:
y=e^(x ^ 3),求其导数:
设 y=e^ u , u=x^3,根据定理3得:
y‘=e’(u)u’(x)=e ^u3x ^2
=ex3 * 3x ^2
导数习题:
1、求y=sin(2x/(1+x^2))导数:
设y=sin(u),u=2x/(1+x^2);
根据定理3,得:
y’=cosu * u’=cos(2x/(1+x^2)) * u’;
设u=k/t,则k=2x,t=(1+x^2);
根据定理1,得:
u’=(2 * (1+x^2)-2x * 2x)/(1+x ^2) ^2
=2(1-1x ^2)/(1+x ^2) ^2
y’=cos(2x/(1+x^2)) * 2(1-1x ^2)/(1+x ^2) ^2;
2、求y=lncos(e^x)导数:
设y=ln(u),u=cos(e^x);根据定理3,得:
y’=1/cos(e^x) * u’;
设u=cos(t),t=e^x;根据定理3,得:
u’=-sin(e^x) * e^x;
y’=-1/cos(e^x) * sin(e^x) * e^x;
y’=-1/tan(e^x) * e ^x;
常用的导数:
(C')=0;
(x^u)'=ux ^(u-1);
(sinx)'=cosx; (cosx)'=-sinx;
(tanx)'=sec^2x; (cotx)'=-csc ^2x;
(a^x)'=a ^xlna(a>0,a≠1);
(log_aX)'=1/xlna(a>0,a≠1); (lnx)'=1/x;
高阶导数
一般地,函数y=f(x)的导数y’=f’(x)仍然是x的函数,我们把y’=f’(x)的导数叫做函数y=f(x)的二阶导数,记作y’'或d^2y/dx ^2 = d(dy/dx)/dx,二阶及二阶以上的导数叫做n阶导数。
常用的高阶导数:
y=sinx;y^'(n)=sinx(x+n * π/2);
y=cosx;y^'(n)=cos(x+n * π/2);
y=ln(1+x);y^'(n)=(-1)^(n-1) * (n-1)!/(1+x)^n;
y=x^u;y^'(n)=u * (u-1) * .... * (u-n+1)* x^(u-n+1),当n=u, y^'(n)=n!
y=(u(x)+v(x));y^'(x)=u^'(x)+v^'(x);
y=(u(x) * v(x));y^'(x)=∑(k=0,k->n)_CnU^(n-k) * v^(k)
隐函数的导数
如果变量x和y满足一个方程F(x,y)=0,在一定条件下,当x取区间内的任一值时,相应的总有满足方程的唯一的y值存在,那么就说方程F(x,y)=0在该区间内确定一个隐函数。
隐函数求导方法:
1.求由方程e^y+xy-e=0所确定的隐函数的导数dy/dx。
步骤一:根据导数相乘法则,对方程左右两边分别求导得:
e^y*y’+y+xy’ = 0;
y’ = -y/(e^y+x),x+e ^y’≠0;
2.求y^5+2y-x-3x ^7 = 0;
5y^4y’+2y’-1+21x ^6 = 0;
5y^4y’+2y’ = 1+21x ^6;
y’ = (1+21x ^6)/5y ^4+2;