学习opencv(三、矩阵的掩膜运算)

一、获取图像像素指针

二维图像保存在电脑中,可以理解为矩阵,一个二维数组,每个位置都会有一个像素值。访问像素值,就是访问二维数组中某个位置的值。

访问的时候,我们先访问行,后访问列,通过如下方式,我们获取行指针,索引i表示第几行,从0开始计行数。

Mat.ptr<uchar>(int i=0) //获取像素矩阵的指针,索引i表示第几行,从0开始计行数。

我们通过行指针,可以获取到该行的的所有点,即所有像素。

const uchar*  current= myImage.ptr<uchar>(row); //获得当前行指针
 
p(row, col) =current[col]  //获取当前像素点P(row, col)的像素值。

获取到像素点,我们就可以对这个像素点进行操作,如果我们加上循环嵌套,还可以遍历所有的像素点,即对所有的像素点进行操作。

像素范围处理saturate_cast

处理的原则如下:

如果我们输入小于0的值,它会返回0,

如果我们输入大于255的值,它会返回255,

如果我们输入0-255之间的值,它会正常返回。

如:
saturate_cast<288>,返回255.
saturate_cast<-288>,返回0.
saturate_cast<100>,返回100.
这个函数确保RGB的值在0-255之间。

二、 矩阵的掩膜操作

在这里插入图片描述掩膜操作可以实现图像对比度调整。

下面是通过定义编写的代码来进行掩膜运算

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;

int main(int argc, char** argv) {
	Mat src, dst;
	src = imread("D:/vcprojects/images/test.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	namedWindow("input image", CV_WINDOW_AUTOSIZE);
	imshow("input image", src);
	
	int cols = (src.cols-1) * src.channels();
	int offsetx = src.channels();
	int rows = src.rows;

	dst = Mat::zeros(src.size(), src.type());
	for (int row = 1; row < (rows - 1); row++) {
		const uchar* previous = src.ptr<uchar>(row - 1);
		const uchar* current = src.ptr<uchar>(row);
		const uchar* next = src.ptr<uchar>(row + 1);
		uchar* output = dst.ptr<uchar>(row);
		for (int col = offsetx; col < cols; col++) {
			output[col] = saturate_cast<uchar>(5 * current[col] - (current[col- offsetx] + current[col+ offsetx] + previous[col] + next[col]));
		}
	}
	namedWindow("contrast image demo", CV_WINDOW_AUTOSIZE);
	imshow("contrast image demo", dst);

	waitKey(0);
	return 0;
}

opencv3对于掩膜操作有API:filter2D

void filter2D( 
    InputArray src, 
    OutputArray dst, 
    int ddepth,                            
    InputArray kernel, 
    Point anchor = Point(-1,-1),                            
    double delta = 0, 
    int borderType = BORDER_DEFAULT 
);

(1)InputArray类型的src ,输入图像。
(2)OutputArray类型的dst ,输出图像,图像的大小、通道数和输入图像相同。
(3)int类型的depth,目标图像的所需深度。
(4)InputArray类型的kernel,卷积核(或者更确切地说是相关核)是一种单通道浮点矩阵;如果要将不同的核应用于不同的通道,请使用split将图像分割成不同的颜色平面,并分别对其进行处理。。
(5)Point类型的anchor,表示锚点(即被平滑的那个点),注意他有默认值Point(-1,-1)。如果这个点坐标是负值的话,就表示取核的中心为锚点,所以默认值Point(-1,-1)表示这个锚点在核的中心。。
(6)double类型的delta,在将筛选的像素存储到dst中之前添加到这些像素的可选值。说的有点专业了其实就是给所选的像素值添加一个值delta。
(7)int类型的borderType,用于推断图像外部像素的某种边界模式。有默认值BORDER_DEFAULT。

可有如下运行代码

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace cv;

int main(int argc, char** argv) {
	Mat src, dst;
	src = imread("D:/vcprojects/images/test.png");
	if (!src.data) {
		printf("could not load image...\n");
		return -1;
	}
	namedWindow("input image", CV_WINDOW_AUTOSIZE);
	imshow("input image", src);
	double t = getTickCount();
	Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
	filter2D(src, dst, src.depth(), kernel);
	double timeconsume = (getTickCount() - t) / getTickFrequency();
	printf("tim consume %.2f\n", timeconsume);

	namedWindow("contrast image demo", CV_WINDOW_AUTOSIZE);
	imshow("contrast image demo", dst);

	waitKey(0);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值