一、获取图像像素指针
二维图像保存在电脑中,可以理解为矩阵,一个二维数组,每个位置都会有一个像素值。访问像素值,就是访问二维数组中某个位置的值。
访问的时候,我们先访问行,后访问列,通过如下方式,我们获取行指针,索引i表示第几行,从0开始计行数。
Mat.ptr<uchar>(int i=0) //获取像素矩阵的指针,索引i表示第几行,从0开始计行数。
我们通过行指针,可以获取到该行的的所有点,即所有像素。
const uchar* current= myImage.ptr<uchar>(row); //获得当前行指针
p(row, col) =current[col] //获取当前像素点P(row, col)的像素值。
获取到像素点,我们就可以对这个像素点进行操作,如果我们加上循环嵌套,还可以遍历所有的像素点,即对所有的像素点进行操作。
像素范围处理saturate_cast
处理的原则如下:
如果我们输入小于0的值,它会返回0,
如果我们输入大于255的值,它会返回255,
如果我们输入0-255之间的值,它会正常返回。
如:
saturate_cast<288>,返回255.
saturate_cast<-288>,返回0.
saturate_cast<100>,返回100.
这个函数确保RGB的值在0-255之间。
二、 矩阵的掩膜操作
掩膜操作可以实现图像对比度调整。
下面是通过定义编写的代码来进行掩膜运算
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst;
src = imread("D:/vcprojects/images/test.png");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src);
int cols = (src.cols-1) * src.channels();
int offsetx = src.channels();
int rows = src.rows;
dst = Mat::zeros(src.size(), src.type());
for (int row = 1; row < (rows - 1); row++) {
const uchar* previous = src.ptr<uchar>(row - 1);
const uchar* current = src.ptr<uchar>(row);
const uchar* next = src.ptr<uchar>(row + 1);
uchar* output = dst.ptr<uchar>(row);
for (int col = offsetx; col < cols; col++) {
output[col] = saturate_cast<uchar>(5 * current[col] - (current[col- offsetx] + current[col+ offsetx] + previous[col] + next[col]));
}
}
namedWindow("contrast image demo", CV_WINDOW_AUTOSIZE);
imshow("contrast image demo", dst);
waitKey(0);
return 0;
}
opencv3对于掩膜操作有API:filter2D
void filter2D(
InputArray src,
OutputArray dst,
int ddepth,
InputArray kernel,
Point anchor = Point(-1,-1),
double delta = 0,
int borderType = BORDER_DEFAULT
);
(1)InputArray类型的src ,输入图像。
(2)OutputArray类型的dst ,输出图像,图像的大小、通道数和输入图像相同。
(3)int类型的depth,目标图像的所需深度。
(4)InputArray类型的kernel,卷积核(或者更确切地说是相关核)是一种单通道浮点矩阵;如果要将不同的核应用于不同的通道,请使用split将图像分割成不同的颜色平面,并分别对其进行处理。。
(5)Point类型的anchor,表示锚点(即被平滑的那个点),注意他有默认值Point(-1,-1)。如果这个点坐标是负值的话,就表示取核的中心为锚点,所以默认值Point(-1,-1)表示这个锚点在核的中心。。
(6)double类型的delta,在将筛选的像素存储到dst中之前添加到这些像素的可选值。说的有点专业了其实就是给所选的像素值添加一个值delta。
(7)int类型的borderType,用于推断图像外部像素的某种边界模式。有默认值BORDER_DEFAULT。
可有如下运行代码
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
int main(int argc, char** argv) {
Mat src, dst;
src = imread("D:/vcprojects/images/test.png");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
namedWindow("input image", CV_WINDOW_AUTOSIZE);
imshow("input image", src);
double t = getTickCount();
Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
filter2D(src, dst, src.depth(), kernel);
double timeconsume = (getTickCount() - t) / getTickFrequency();
printf("tim consume %.2f\n", timeconsume);
namedWindow("contrast image demo", CV_WINDOW_AUTOSIZE);
imshow("contrast image demo", dst);
waitKey(0);
return 0;
}