- 博客(14)
- 收藏
- 关注
原创 c++ opencv相机标定源代码
它首先通过 3D 点坐标和 2D 像素坐标计算相机在 3D 空间中的旋转向量和平移向量的初值,然后利用迭代优化方法,对旋转向量和平移向量进行逐步优化,最终得到最优的结果。问题:求解最佳旋转矩阵R来近似一个给定的3×3矩阵Q。问题:求解最佳旋转矩阵R来近似一个给定的3×3矩阵Q。函数来计算每个点的投影位置,并将投影位置与真实的 2D 像素坐标之间的误差作为优化的目标函数。因此,在我们求出一个旋转矩阵Q后,可以通过上式得到标准旋转矩阵。因此,在我们求出一个旋转矩阵Q后,可以通过上式得到标准旋转矩阵。
2023-10-12 16:00:55 890
原创 opencv相机标定原理
真实物体通过相机在图像中显示。可以通过一个数学模型将真实物体的三维坐标与图像中的二维坐标一一对应,这个数学模型(相机矩阵)的求取计算过程就是。从三维坐标(世界坐标系)到二维坐标(图像坐标系)又可以分为三个步骤:(1)从世界坐标转换到相机坐标;(2)从相机坐标转换到图像坐标;(3)从图像坐标转换到像素坐标。(1)坐标系(Xw, Yw, Zw)为世界坐标系;(2)坐标系(Xc, Yc, Zc)为相机坐标系;(3)坐标系(x, y)为图像坐标系;(4)坐标系(u, v)为像素坐标系;
2023-10-12 15:55:13 609
原创 qx_recursive_bilateral_filtering
YangQingxiong_Recursive Bilateral Filtering
2022-07-27 15:55:36 196 1
原创 孪生支持向量机基本原理
孪生支持向量机(TWSVM)是一种二值SVM分类器,通过求解两个相关的SVM类型的问题来确定两个非平行平面,其中每个问题都比传统的SVM小。孪生支持向量机公式是基于广义特征值最接近支持向量机(GEPSVM)。在多个基准数据集上,孪生支持向量机不仅速度快,而且具有很好的泛化能力。 孪生支持向量机在本质上类似于GEPSVM,因为它们也获得非平行平面,相应类的数据点围绕这些平面进行聚集。然而,它们基于完全不同的公式。事实上,一对TWSVM中的两个二次规划问题都有一个典型的SVM公式,只是并非所有的模式...
2020-07-26 19:20:15 4617 1
原创 Github详细学习笔记,学会Git
Github详细学习笔记,学会Git1. 了解Git和Github2. 使用Github3. Git安装和使用4. Git基本工作流程5. Git初始化及仓库创建和操作6. Git管理远程仓库7. Github Pages 搭建网站1. 了解Git和Github1.1 什么是GitGit是一个免费、开源的版本控制软件。1.2 什么是版本控制系统版本控制是一种记录一个或若干个文件内容变化,以便将来查阅特定版本修订情况的系统。系统具体功能记录文件的所有历史变化随时可恢复到任何一个历史状态多人协
2020-07-22 19:07:19 343
转载 用于模式分类的孪生支持向量机
用于模式分类的孪生支持向量机孪生支持向量机是一种二值SVM分类器,通过求解2个相关的SVM类型的问题来确定两个非平行平面,其中每个问题都比传统的SVM小。孪生支持向量机公式是基于广义特征值的近端SVM。在多个基准数据集上,孪生SVM不仅速度快。而且具有很好地泛化能力,也可用于自动发现数据的二维投影。孪生支持向量机简介孪生支持向量机(TWSVM)本质上类似于广义特征值近端SVM(GEPSVM),因为它们获得非平行平面,相应类的数据点围绕这些平面进行聚集。然而,它们基于完全不同的公式。事实上,一对TWSV
2020-05-17 19:26:22 864
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人