深度学习系列之YOLOv3 个人总结

前几天YOLOv3问世了,朋友圈也是很多同学转发,很兴奋,当然我也是。所以,先是直接上手体验了一下darknet53,今天把paper看了,做个总结。

1. BBox Prediction

这里写图片描述

与YOLOv2一样,YOLOv3也是在feature map上对每个位置进行bbox预测。图中,t为预测值,但是注意这些值都是相对当前grid的相对值,分别是(tx,ty,tw,th)。最终的预测bbox为:bx,by,bw,bh,这是在image的bbox

其实,上面的都是和YOLOv2一样啦(除了YOLOv2输出的t是5个),下面才是new version的亮点。

3个尺度的feature map

如图
如图,在每个detection前,尺度都不同(23x23,46x46,92x92)。这里用到了上采样。(可以提供更多的语义信息和细粒度特征)。
这里的操作类似于FPN(feature pyramid network)。
在YOLOv3中,我们的anchor由5个变为9个,当然,也是由K均值产生的。每个尺度分配3个anchor。其中每个尺度下每个位置预测3个bbox(4个位置输出+1个objectness+C个类别的分数)。所以每个位置输出(1+4+C)*3个值,这也就是训练时yolov3.cfg里的filter的数量。这也就是每个尺度张量的深度。

2. 网络结构

这里写图片描述
53个卷积层,称为darknet53,类似于ResNET,但速度完爆ResNET。

3. 一点问题

论文中提到YOLOv3在AP50和小目标上表现都不错,但AP75表现就比较乏力。说明随着IoU的升高,YOLOv3预测的bbox不能很好的与GT相重叠。

  • 8
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 15
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值