原文地址:读书笔记之三十二----《信用评分模型技术与应用》(一)
作者:zhaoxq
第一章 信用评分模型在消费信贷管理中的应用
- 拓展客户期:目标客户、产品/激励、利率/年费/其他收费、邮寄与否;
- 审批客户期:批准与否、初始信用额度高低、交叉销售;
- 管理客户期:提高/降低信用额度、超额透支授信、反欺诈、重新定价、激活/挽留、坏账催收、续发信用卡;
第二章 信用评分模型的数据基础
1、申请者资料数据库
- 与其他数据库连接的公共码键;
- 身份信息:如姓名、性别、年龄、出生日期、婚姻状况、证件号码等;
- 联系信息:如通信地址、家庭住址、工作地址、家庭电话、工作电话等;
- 决策参考信息:如学历、职业、收入、住房状况、有无汽车、在现住址居住的时间长短、在现单位工作的时间长短等;
- 决策信息:如批准/拒绝的决定、初始的信用额度、利率和收费条款;
- 其他相关信息:如申请开户的时间、申请渠道等;
- 信用局信用历史信息。
2、信用卡账户的主档案数据库
- 与其他数据库连接的公共码键;
- 账户基本信息:如账户号码、账户类别、开户时间、信用额度、信用额度调整额、信用额度调整时间等;
- 账户总结信息:过去24个周期(或月份)每个周期的未清偿贷款余额、最低应付款额、付款额、交易额、现金提取额、购物额、现金提取次数、购买次数等;
- 账户账务信息:利息收入情况、各项费用收入情况、各项费用支出情况、资金成本等;
- 账户负面信息:过去24个周期(或月份)每个周期的账户地位(拖欠与否、多少周期拖欠等)、拖欠额、超额透支额、支票被退回与否、账户激活与否、冻结代码等;
- 各种模型评分:如信用局风险、收益、破产评分(如果存在信用局并向信用局购买信用评分的话)、各种行为风险、收益、流失倾向等评分(如果开发行为评分的话)。
3、信用卡的交易数据库
- 与其他数据库连接的公共码键;
- 账户号码、交易代码、商户代码等;
- 交易日期、交易日期、交易金额、交易种类、交易地点、交易商户类别、交易国家、交易货币、交易方式、授信决策等。
4、信用卡的欺诈数据库、
- 与其他数据库连接的公共码键;
- 账户号码;
- (第一次)欺诈交易发生的日期、时间;(出于数据加工简易化的考虑)
- 欺诈的种类;
- 相关交易信息和欺诈风险评分;
- 授信决策。
5、信用卡的营销数据库
- 与其他数据库连接的公共码键;
- 营销决策的依据:如信用局的信用记录、银行内部客户记录等;
- 营销决策:如提前批准、各种信用条款(利率、优惠、收费、回报等);
- 营销结果:如客户反应(接受与否)、开户与否、激活与否、转账与否等。
6、其他非信用卡的各种银行内部客户数据库
- 储蓄客户数据库;
- 存款客户数据库;
- 工资直接代存客户数据库;
- 汽车贷款客户数据库;
- 住房贷款客户数据库;
- 耐用消费品贷款客户数据库。
六、数据仓库
第三章 数据挖掘简介
第四章 数据挖掘与信用评分模型的技术
- 对数据进行描述和总结的技术;
- 对变量进行栏位划分和信息转换的技术;
- 主成分分析;
- 因子分析;
- 变量类聚分析;
- 类聚分析;
- 逻辑回归模型;
- 神经网络模型;
- 判别分析;
- 决策树模型;
- 共性过滤分析;
- 多元回归模型;
- 基因算法;
- RFM分析;
- 存活分析;
- 时间系列分析:趋势分析、季节性分析、ARIMA模型。
一、对数据进行描述和总结的技术
二、对变量进行栏位划分和信息转化的技术
三、主成分分析、因子分析、变量类聚分析
四、类聚分析
五、逻辑回归模型
六、神经网络模型
七、判别分析
八、决策树模型
九、共性过滤分析
十、多元回归模型
十一、基因算法
十二、RFM分析
十三、存活分析
十四、时间系列分析