在 AI 时代,大模型和通用人工智能(AGI)正在深刻改变我们的生活和工作方式。以下是一些关于大模型和 AGI 的关键知识点,帮助我们更好地理解这一技术浪潮。
一、大模型的核心概念与特点
(一)什么是大模型
大模型(Large Language Models,LLMs)是指具有大规模参数和复杂计算结构的深度学习模型,通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。这些模型通过训练海量数据来学习复杂的模式和特征,从而在各种任务中表现出色。
(二)大模型的特点
• 庞大的参数规模:大模型包含数十亿甚至数千亿个参数,模型大小可以达到数百 GB 甚至更大。
• 涌现能力:当模型的训练数据突破一定规模后,大模型会涌现出之前小模型所不具备的复杂能力和特性。
• 强大的泛化能力:通过在大规模数据集上训练,大模型能够适应新的、未见过的数据。
• 灵活性和可定制性:大模型可以通过微调(Fine-tuning)技术快速适应新的任务或领域。
• 高计算成本:训练和部署大模型需要大量的计算资源,包括高性能的 GPU、TPU 等硬件设备。
二、大模型的训练与优化
(一)Scaling Law(规模定律)
Scaling Law 描述了模型性能随着模型规模(参数数量)、训练数据量以及计算资源的增加而呈现出可预测的增长规律。
具体来说:
• 参数数量与性能:模型参数数量的增加可以显著提升模型的表达能力和理解复杂模式的能力。
• 训练数据量:大规模的多样性数据能够增强模型的泛化能力。
• 数据质量与多样性:高质量的数据集能够显著提高模型的精度和可解释性。
(二)强化学习与创新训练方式
• 强化学习:基于人类反馈的强化学习(RLHF)通过奖励模型和策略优化算法(如 PPO)提升模型性能,尤其在对话系统和决策任务中效果显著。DeepSeek R1-Zero 是首个通过纯强化学习(RL)训练而无需任何监督微调(SFT)数据的模型,这种训练方式突破了以往模型依赖大量标注数据的传统模式。
• 多阶段强化学习流程:DeepSeek R1 采用独特的“冷启动+多阶段 RL”策略,通过不同阶段的优化,提升模型在多种任务中的表现。
(三)预训练与微调
预训练(P