一、快速排序算法
步骤1:选取一串数字中的中心轴
步骤2:将大于中心轴的数字放在右边
步骤3:将小于中心轴的数字放在左边
步骤4:分别对左右两个序列重复前三步操作
public class QuickSort : MonoBehaviour
{
private void Start()
{
int[] Nums = { 4, 3, 6, 1, 8, 0, 3, 2, 5, 7};
Sort(Nums, 0, 9);
for (int i = 0; i < 10; i++)
{
Debug.Log(Nums[i]);
}
}
void Sort(int[] nums,int left,int right)
{
//退出条件
if (left >= right)
return;
int i = left;
int j = right;
//中心元素取为第一个元素
int temp = nums[left];
while(i != j)
{
//从最右边的元素开始比较中心元素
while(i < j && nums[j] >= temp)
{
j--;
}
if(i < j )
{
nums[i] = nums[j];
}
while(i < j && nums[i] <= temp)
{
i++;
}
if(i < j)
{
nums[j] = nums[i];
}
}
nums[i] = temp;
Sort(nums, left, i - 1);
Sort(nums, i+1, right);
}
}
二、冒泡排序算法
步骤一、从数组的最左侧两个元素进行比较
步骤二、将较大的数向右移动,再进行比较
步骤三、直到将最大的数字放在最右边
步骤四、重复上述操作,不过这次比较数组的数量-1
public class BubbleSort : MonoBehaviour
{
private void Start()
{
int[] array = { 6, 5, 8, 7, 1, 2, 3, 5 };
Sort(array);
for (int i = 0; i < array.Length; i++)
{
Debug.Log(array[i]);
}
}
private void Sort(int[] array)
{
//进行i次排序,对数组内所有元素都进行比较
for (int i = 0; i < array.Length - 1; i++)
{
//对某一元素进行的相邻元素的比较,比较次数差i次
for(int j = 0; j < array.Length-1-i; j++)
{
if(array[j] > array[j+1])
{
int temp = array[j];
//如果左边的数字比右边的大,就把大的数字向右平移一位
array[j] = array[j + 1];
array[j + 1] = temp;
}
}
}
}
}
三、二分查找(要求数组顺序排列)
一、初始化三个序号,分别代表第一个,最后一个和中间序号
二、用中间序号的值和目标值进行对比,如果相等就返回
三、如果中间序号的值大于目标值,就向左缩小范围
四、如果中间序号的值小于目标值,就向右缩小范围
第一种实现:常规实现
public class BinarySearch : MonoBehaviour
{
private void Start()
{
int[] array = { 8, 11, 21, 28, 32, 43, 48, 56, 69, 72, 80, 94 };
Debug.Log(Search(array, 80));
}
private int Search(int[] array,int key)
{
var min = 0;
var max = array.Length - 1;
var mid = 0;
while(min <= max)
{
mid = (min + max) / 2;
if(array[mid] > key)
{
max = mid - 1;
}
else if(array[mid] < key)
{
min = mid + 1;
}
else if(array[mid] == key)
{
return mid;
}
}
return 0;
}
}
第二种实现:递归实现
Debug.Log(SearchTwo(array, 80,0,12));
private int SearchTwo(int[] array,int key,int low,int high)
{
if (low > high)
return -1;
var mid = (low + high) >> 1;
if (array[mid] > key)
{
return SearchTwo(array, key, low, mid - 1);
}
else if (array[mid] < key)
{
return SearchTwo(array, key, mid + 1, high);
}
else
return mid;
}
}
四、基于四叉树/八叉树的碰撞检测
五、随机寻路算法、跟踪算法、闪避算法(与跟踪算法相反)
DFS(Deep First Search)、BFS(Breadth Fitst Search)
六:A*寻路算法
A*主要是利用三个数值来计算最佳路径,分别是G代价、H代价、F代价
G:从某节点到开始节点的移动距离
H:从某节点到目标节点的估计移动距离,从任何节点迭代实际所需的距离大于或者等于H代价。
F:F代价等于G+H,F值越低,作为寻径选择就越有吸引力
我们的目标是简单的选择最低的F代价,不断的重复,直到我们的目标节点
代码部分可以见:
(1条消息) Unity A星(A Star/A*)寻路算法_unity寻路算法_九本才的博客-CSDN博客
现在有A*的寻路插件
七:B*寻路算法
理解B*可以把它想象成一个朝着目标前进的贪吃蛇,如果遇到障碍就会分裂成两条蛇,一左一右绕开障碍,只要有一条蛇碰到目标就结束寻路
优点:目标点在封闭空间内时,BStar效率优势明显
缺点:喜欢贴着墙走
八、Nav Mesh导航系统
NacigationMesh是一种数据结构,用于描述游戏世界的可行走表面
Navigation是Unity自带的导航,具备基本的Bake,NavMesh和NavMeshAgent等基本导航功能
新版中有NavMeshComponent,能够实现动态烘焙
步骤:
打开Navgation面板、
设置烘焙参数(Bake Agent)、
设置行走区域(设置为Navigation Static)、烘焙
角色添加寻路控制器(Nav Mesh Agent)、
挂在一个脚本到Player身上,告诉目标点即可
using UnityEngine;
using UnityEngine.AI;
public class Player : MonoBehaviour
{
private NavMeshAgent agent;
public Transform target;
void Start()
{
agent = GetComponent<NavMeshAgent>();
agent.destination = target.position;
}
}
九、数组中仅出现过一次的元素
方法一:使用位异或运算
仅针对数组中只出现一次的情况
使用位运算,最后只剩下没有重复的元素
using UnityEngine;
/// <summary>
/// 某个只出现一次的数字
/// 思路:采用异或操作,相同为0,不同为1
/// a^a = 0; a^0 = a;
/// </summary>
public class SingleNumber : MonoBehaviour
{
public int[] nums = { 1, 2, 3, 2, 1 };
private void Start()
{
SingleNumber1(nums);
}
public void SingleNumber1(int[] nums )
{
int result = 0;
for(int i = 0; i < nums.Length; i++)
{
//第一次异或操作完了就是第一个元素,然后第一个元素和第二个元素对比
//如果两个相同,返回就是0,如果不相同,
result ^= nums[i];
}
Debug.Log(result);
}
}
方法二:使用Set集合
HashSet具有去重性
使用!Add即可
/// <summary>
/// 使用HashSet来解决,HashSet具有去重特性!
/// </summary>
/// <param name="nums"></param>
public void SingleNumber2(int[] nums)
{
HashSet<int> hash = new HashSet<int>();
for (int i = 0; i< nums.Length;i++)
{
if(!hash.Add(nums[i]))
{
hash.Remove(nums[i]);
}
}
foreach (var item in hash)
Debug.Log(item);
}
}
十、多数元素
给定一个大小为 n 的数组 nums ,返回其中的多数元素。多数元素是指在数组中出现次数 大于 ⌊ n/2 ⌋ 的元素。
方法一、排序后输出中间元素即可
public class Majority : MonoBehaviour
{
int[] nums = { 1, 2, 3, 4, 5, 6, 7, 2, 2, 2, 2, 2 };
private void Start()
{
Major1(nums);
Major2(nums);
}
/// <summary>
/// 方法1:先排序,再输出一半中的元素
/// </summary>
/// <param name="nums"></param>
public void Major1(int [] nums)
{
Array.Sort(nums);
Debug.Log(nums[nums.Length/2]);
}
方法二、摩尔投票法
把第一个元素作为开始元素,如果紧接的两个元素不相同,count就减,如果相同,count就加,到最后还剩下的count就是最多的元素
/// <summary>
/// 方法2:摩尔投票法
/// </summary>
public void Major2(int[] nums)
{
int major = nums[0];
int count = 1;
for (int i = 1; i < nums.Length; i++)
{
//消除完了,就进行下一个
if(count == 0)
{
count++;
major = nums[i];
}
//跟后面的元素相同的话,这个元素数目就继续增加
else if(major == nums[i])
{
count++;
}
else
{
count--;
}
}
Debug.Log(major);
}
}
十一、合并两个有序数组
给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
方法1:使用三目运算符
即:
x?y:z 表示如果表达式x为true,则返回y;
如果x为false,则返回z
是省略if{}else{}的简单形式。
using UnityEngine;
/// <summary>
/// 合并两个有序数组
/// </summary>
public class Merge : MonoBehaviour
{
int[] nums1 = { 1, 2, 3,0,0,0 };
int[] nums2 = { 2, 5, 6 };
private void Start()
{
MergeNums(nums1, 3, nums2, 3);
foreach (var item in nums1)
{
Debug.Log(item);
}
}
/// <summary>
/// 合并有序数组方法1
/// </summary>
/// <param name="数组1"></param>
/// <param name="数组1的长度"></param>
/// <param name="数组2"></param>
/// <param name="数组2的长度"></param>
public int[] MergeNums(int[] nums1,int m,int[] nums2,int n)
{
int i = m - 1;
int j = n - 1;
int end = m + n - 1;
while(j>=0)
{
nums1[end--] = (i >= 0 && nums1[i] > nums2[j]) ? nums1[i--] : nums2[j--];
}
return nums1;
}
}
方法二:使用官方API
Array.Copy:合并两个数组
Array.Sort:排序方法,由小及大
public void MegerNums2(int[] num1, int m ,int[] nums2, int n )
{
Array.Copy(nums2, 0, nums1, m, n);
Array.Sort(nums1);
}
十二、鸡蛋掉落
给你 k 枚相同的鸡蛋,并可以使用一栋从第 1 层到第 n 层共有 n 层楼的建筑。
已知存在楼层 f ,满足 0 <= f <= n ,任何从 高于 f 的楼层落下的鸡蛋都会碎,从 f 楼层或比它低的楼层落下的鸡蛋都不会破。
每次操作,你可以取一枚没有碎的鸡蛋并把它从任一楼层 x 扔下(满足 1 <= x <= n)。如果鸡蛋碎了,你就不能再次使用它。如果某枚鸡蛋扔下后没有摔碎,则可以在之后的操作中 重复使用 这枚鸡蛋。
请你计算并返回如果要确定 f
确切的值 的话,我们的 最小操作次数 是多少?