参数估计有多种方法,下面简单和大家分享以下两种:
一、最大似然估计
原理: 最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,也就是概率分布函数或者说是似然函数最大。
二、最小二乘法
当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值和观测值之差的平方和最小。
三、两者联系
一般假设其满足正态分布函数的特性,在这种情况下,最大似然估计和最小二乘估计是等价的,也就是说估计结果是相同的,但是原理是不同的。最小二乘法以估计值与观测值的差的平方和作为损失函数,极大似然法则是以最大化目标值的似然概率函数为目标函数。
四、总结
最小二乘法的核心是权衡,因为你要在很多条线中间选择,选择出距离所有点之后最短的,而极大似然核心是自恋,要相信自己是天选之子,自己看到的,就是冥冥之中最接近真相的。当服从正态分布时,两都的结论相等。
个人见解,欢迎批评指正!
————————————————
版权声明:本文为CSDN博主「玲[逆流而上]」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_45734454/article/details/102961112