SpectralNet : spectral clustering using deep neural networks

谱聚类是无监督数据分析中的领先且流行的技术。其主要限制之一是频谱嵌入的可扩展性和泛化(即,样本扩展)。在这篇文章中介绍了一种克服上述缺点的谱聚类深度学习方法。文章中的网络称为SpectralNet,学习一个映射F\theta,将输入数据点映射到其相关图拉普拉斯矩阵的本征空间中,然后将它们聚类。

文章中的训练好的SpectralNet可以实现将输入点到输出图拉普拉斯矩阵的本征空间的映射,并且实现聚类。训练SpectralNet包含三个部分:

  1. 对于给定的输入无监督学习关系矩阵,通过Siamese网络
  2. 通过在强制正交性的同时优化谱聚类目标,无监督地学习映射F\theta
  3. 通过嵌入空间中的k均值聚类来学习聚类分配

下面分别介绍三个部分的具体实现:

1. Siamese 网络

Siamese网络通常训练一组相似(正)和不相似(负)的数据点。 当标记数据可用时,可以基于标记信息选择这样的对(即,具有相同标记的点对被认为是正的,而具有不同标记的点对被认为是负的)。  在未标记的数据集这种情况下,可以直接从欧几里德距离或图距来学习关系矩阵例如通过“标记”点xi; 如果||xi-xj||很小则xj为正,否则为负。 在文章中,我们从每个点的最近邻居构建正对,负对由远距离较大的点构成。 因此,Siamese网络被训练以学习自适应最近邻居度量。
Siamese网络将每个数据点xi映射到某个空间中。 通常训练网以最小化对比度损失,定义为

一旦训练了Siamese网络,我们就用它来定义一个用于训练SpectralNet的关系矩阵W

2. SpectralNet

文章中使用Yin Zheng, Huachun Tan, Bangsheng Tang, Hanning Zhou, et al. Variational deep embedding: A generative approach to clustering. arXiv preprint arXiv:1611.05148, 2016.中的自编码网络,设计了新的损失函数以及输出层。

其中,:显然,通过将所有点映射到相同的输出向量可以最小化损失。 为了防止这种情况,我们要求输出在D期望时是正交的,即,

具体来说,在每次迭代中,我们随机抽样m个样本的小批量,并将它们组织在m×d矩阵X中。 然后我们将损失降至最低

从而小批量中的正交要求就变成了

文章中将映射Fθ实现为一般神经网络,其最后一层强制执行上述正交性约束。那么根据QR分解将设置为最后一层的权重。

3. 将上面网络的输出也就是映射后的特征向量利用k-means聚类

整体算法如下所示

一旦训练了SpectralNet,计算新测试点的嵌入(即,样本的外扩展)及其簇分配就很简单:我们只需通过网络Fθ传播每个测试点xi以获得它们的嵌入yi,并指定点到最近的中心,在训练数据上使用k-means计算质心,在算法1的最后一行。优点就是不需要因为新的测试样本而从新计算关系矩阵。

为了检查SpectralNet对新测试点的泛化能力,问文章重复实验,只在训练集上训练SpectralNet,并通过将测试样例的标签传递到网络并将每个测试示例与最近的质心相关联来预测测试样例的标签。 从嵌入训练样例的k均值开始。 测试示例的准确度为.970,这意味着SpectralNet在这种情况下很好地概括了看不见的测试数据。 同样也评估了k-means的泛化性能。 使用输入空间时测试集上k-means的准确度为.546,使用代码空间时为.776,两者都明显逊于SpectralNet。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这句话的意思是,使用快速局部谱滤波在图上进行卷积神经网络。在这个过程中,图像被表示为一个图,节点表示像素,边表示它们之间的关系。然后使用谱滤波器来处理这些图像,以便更好地捕捉它们之间的关系。由于使用了快速局部谱滤波器,因此可以有效地减少计算量,并提高计算效率。 ### 回答2: 卷积神经网络(CNN)在计算机视觉领域中被广泛应用,而针对图像上的卷积运算也得到了很好的改进。但是,对于图结构数据,卷积操作却变得更加困难。近年来出现了一些新的关于卷积神经网络用于图结构数据的方法,如基于图卷积网络(GCN)等。本文要介绍的“convolutional neural networks on graphs with fast localized spectral filtering”,即基于图谱的局部快速滤波的卷积神经网络,是另一种针对图结构数据的卷积方法。 传统的CNN通常采用局部的、线性的滤波器来提取图像的空间特征。而对于图结构数据,由于图上两个节点之间的关系是任意的,以及节点的特征不一定是有序的,因此无法直接地应用局部的卷积操作。但是,与图结构数据相对应的,是一个特殊的函数——图谱,它提供了丰富的图结构信息。 图谱(即拉普拉斯矩阵)是一个对称的稀疏矩阵,反映了图结构和节点特征之间的关系。将图谱的特征值和特征向量作为滤波器,就可以将图上的卷积操作转化为图谱卷积的形式。尤其是,利用局部滤波器就可以实现对图上节点嵌入向量的快速计算。 该方法涉及到了图谱嵌入、拉普拉斯矩阵、小批量图谱卷积核的设计等方面的内容。其中,图谱嵌入是将图结构数据映射为一个低维向量表示的过程,具有降维和特征抽取的作用;拉普拉斯矩阵是反应了图结构的一类矩阵,与图谱嵌入有密切关系;在卷积核设计方面,考虑到图结构的多样性和规模,将设计小批量卷积核进行快速的局部卷积操作,以提高计算效率。 该方法的优点在于,可以处理任意结构的图像和非图像数据,并且具有较好的鲁棒性和泛化能力。是否可以进一步提高计算效率,仍需更多的研究来探索。 ### 回答3: 卷积神经网络是一种基于多层神经元的深度学习算法,被用于图像、文本和声音等领域。最近,学者们开始研究如何将卷积神经网络应用于图形数据,如社交网络、交通网络和化学分子。其中,卷积神经网络特别适合处理图形数据,因为它可以学习局部特征,并保持局部空间关系。因此,卷积神经网络在图形任务上取得了许多优秀成果。 然而,之前的卷积神经网络模型存在一些不足,比如缺乏设计可解释性、效率低下、过度拟合等。为了解决这些问题,一种新的基于谱滤波的图形卷积神经网络被提出,即convolutional neural networks on graphs with fast localized spectral filtering。 这种方法在卷积层引入了局部谱滤波器,能够提高模型的效率和可解释性。谱滤波器可以学习图形数据的空间结构特征,能够捕捉节点之间的相邻关系和密度。而局部谱滤波器则针对每个节点的邻居子图进行滤波,使模型能够更好地识别图形数据中的局部特征。 此外,该方法还能够解决过拟合问题。过拟合是神经网络经常遇到的问题,即模型在训练集上表现极佳,但在测试集上表现不佳。谱滤波器可以在输入数据中学习的特征不够显著时,利用图形数据的全局谱信息进行补充,并减少过拟合的发生。 总之,convolutional neural networks on graphs with fast localized spectral filtering是一种高效、可解释、稳定的图形卷积神经网络。此方法在实际应用中有很大的潜力,如社交网络分析、城市交通预测、生物学和化学分子分析等领域。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值