【论文学习】AGG: Amortized Generative 3D Gaussians for Single Image to 3D

项目地址:AGG: Amortized Generative 3D Gaussians for Single Image to 3D

摘要

目前基于优化的3D生成需要许多计算成本高的分数蒸馏步骤。

利用中间混合表示,AGG分解三维高斯位置的生成和其他外观属性进行联合优化。

此外,我们提出了一个级联管道,它首先生成 3D 数据的粗表示,然后使用 3D 高斯超分辨率模块对其进行上采样。

介绍

虽然 3D 高斯可以通过自适应密度控制进行优化以表示某些几何形状,但初始化对于复杂的对象结构仍然至关重要。

高度希望摊销 amortized 管道一次性生成 3D 高斯。但是有两个挑战。

  1. 原3D高斯用的density control,这导致动态数量的 3D 高斯,因此很难在摊销的训练设置中预测它们。
  2. 其次,3D 高斯需要经过策划的初始化 [8, 59]。在摊销amortized设置中,神经网络预测 3D 高斯,这导致需要很好地初始化网络。
  3. 此外,优化过程通常倾向于更新 3D 高斯的外观,而不是直接将它们的位置移动到所需的 3D 位置。

我们的方法两阶段,由粗到细。

在第一阶段,我们采用混合生成器,以粗分辨率生成 3D 高斯。在这个阶段,我们将几何和纹理生成任务分解为两个不同的网络。几何transformer 解码从预先训练的图像特征提取器中提取的图像特征,并预测3D高斯的位置。另一个纹理转换器类似地生成一个纹理字段,稍后由高斯位置查询以获得其他点属性。

在第二阶段,我们利用点体素卷积网络来有效地提取局部特征,并从前一阶段对粗3D高斯进行超分辨。

贡献:

  • 我们对平摊单幅图像到三维高斯设置的任务进行了初步研究。与在单个对象上运行的现有工作不同,我们构建了一个新颖的级联生成框架,该框架立即一次性呈现 3D 高斯。
  • 我们的AGG网络首先通过分解几何和纹理的混合表示生成粗略的高斯预测。通过两个独立的transformer预测几何和纹理信息,可以联合优化三维高斯属性。
  • 第二阶段介绍了一种基于unet的具有点体素层的架构,有效地超分辨率了3D高斯。
  • 实验牛。

方法

目标:使用神经网络从单个图像生成 3D 高斯 in one shot。

我们的级联方法首先构建一个混合生成器,它将输入图像特征映射到一组简洁的 3D 高斯属性。随后,使用具有点体素层的 UNet 架构来超分辨率 3D 高斯表示。

3.1 高斯背景

遵循三维高斯溅射中的惯例,但是也有改动。首先降低球谐系数的程度,只允许3D高斯漫反射颜色,此外,我们为 3D 高斯设置了规范各向同性尺度和旋转,因为我们发现这些属性在摊销优化过程中非常不稳定。

3.2 Coarse Hybrid Generator

使用vision Transformer对输入图像编码,随后,构造一个几何和纹理生成器,将可学习的查询分别映射到位置序列和纹理场。然后将这种混合表示解码为显式的3D高斯,从而实现高效的高分辨率渲染,并通过多视图图像促进监督。

通过多视图图像上定义的渲染损失进行训练,并使用 3D 高斯伪标签以倒角距离损失预热。

Encoding Input RGB Information. 以前的方法用CLIP,但是这毕竟不是用来提特征的,所以用预训练的DINOV2

Geometry Predictor. location信息是通过3D均值向量来的,3维向量。采用了一个基于Transformer的网络。Transformer输入是一组可学习的查询,由一组可学习的位置嵌入实现。在输入到变压器网络之前,位置嵌入与从DINOv2模型中提取的全局标记[CLS]相加。

Transformer架构遵循DINOV2, 还用了cross attention.

Texture Field Generator. 预测纹理一个主要的挑战是在 3D 空间中缺乏对纹理的直接基本事实监督。相反,纹理信息是通过2D中的渲染损失来推断的。

为了解决这个问题,使用不同的Transformer来生成纹理场。我们的纹理场是使用三平面[5]实现的,辅以共享解码MLP头。三平面接受几何分支的3D位置查询,输出纹理。利用该纹理场有助于分解几何和纹理信息的优化,并且不正确的几何预测不影响纹理分支的优化过程。

Supervision Through 2D Renderings. 我们利用LPIPS[63]和L1损失来最小化它们的差异.

3.3. Gaussian Super Resolution

主要关注于细化局部细节。为简单起见,我们使用具有有效点体素层的轻量级 UNet 架构 。

Latent Space Super-Resolution. 我们执行特征扩展作为直接扩展点数的代理。通过点体素卷积编码器,我们首先将阶段一个粗糙的3D高斯转换为紧凑的潜在特征

Incorporating RGB information. 由于振荡点位置和粗糙几何形状,纹理场可能会收敛到模糊的结果。我们将 RGB 特征引入 UNet 架构的瓶颈。具体来说,我们在特征扩展操作之前和之后采用交叉注意力层。

图 2. 我们粗混合生成器的架构。我们首先使用预训练的DINOv2图像编码器提取基本特征,然后采用两个变压器,分别将可学习的查询标记映射到高斯位置和纹理场。纹理字段接受来自几何分支的位置查询,解码 MLP 进一步将插值平面特征转换为高斯属性。

  • 16
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值