一眼看穿微积分和奇怪的三角函数

微积分公式与解法大全

1 微积分运算法则

设函数 u u u v v v均为可导函数, k k k l l l为常数。

序号导数微分
1 ( k u + l v ) ′ = k u ′ + l v ′ (ku+lv)'=ku'+lv' (ku+lv)=ku+lv d ( k u + l v ) = k d u + l d v d(ku+lv)=kdu+ldv d(ku+lv)=kdu+ldv
2 ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv d ( u v ) = v d u + u d v d(uv)=vdu+udv d(uv)=vdu+udv
3 ( u v ) ′ = u ′ v − u v ′ v 2 (\frac{u}{v})'=\frac{u'v-uv'}{v^2} (vu)=v2uvuv d ( u v ) = v d u − u d v v 2 d(\frac{u}{v})=\frac{vdu-udv}{v^2} d(vu)=v2vduudv
4 d y d x = d y d u d u d x \frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx} dxdy=dudydxdu d y = f ′ [ φ ( x ) ] φ ′ ( x ) d x = f ′ ( u ) d u dy=f'[\varphi(x)]\varphi'(x)dx=f'(u)du dy=f[φ(x)]φ(x)dx=f(u)du

注意: y = f ( u ) , u = φ ( x ) y=f(u),u=\varphi(x) y=f(u),u=φ(x)均为可导函数,则函数 f [ φ ( x ) ] f[\varphi(x)] f[φ(x)]为可导函数。

2 微积分基本公式

序号导数微分积分
1 x μ = μ x μ − 1 x^{\mu}={\mu}x^{\mu-1} xμ=μxμ1 d ( x μ ) = μ x μ − 1 d x d(x^{\mu})={\mu}x^{\mu-1}dx d(xμ)=μxμ1dx ∫ x μ d x = x μ + 1 μ + 1 \int x^{\mu}dx=\frac{x^{\mu+1}}{\mu +1} xμdx=μ+1xμ+1
2 ( e x ) ′ = e x (e^x)'=e^x (ex)=ex d ( e x ) = e x d x d(e^x)=e^xdx d(ex)=exdx ∫ e x d x = e x + c \int e^xdx=e^x+c exdx=ex+c
3 ( a x ) ′ = a x l n a (a^x)'=a^xlna (ax)=axlna d ( a x ) = a x l n a d x d(a^x)=a^xlnadx d(ax)=axlnadx ∫ a x d x = a x l n a + c \int a^xdx=\frac{a^x}{lna}+c axdx=lnaax+c
4 ( l n x ) ′ = 1 x (lnx)'=\frac{1}{x} (lnx)=x1 d ( l n x ) = 1 x d x d(lnx)=\frac{1}{x}dx d(lnx)=x1dx
5 ( l o g a x ) ′ = 1 x l n a (log_ax)'=\frac{1}{xlna} (logax)=xlna1 d ( l o g a x ) = 1 x l n a d x d(log_ax)=\frac{1}{xlna}dx d(logax)=xlna1dx
6 ( s i n x ) ′ = c o s x (sinx)'=cosx (sinx)=cosx d ( s i n x ) = c o s x d x d(sinx)=cosxdx d(sinx)=cosxdx ∫ s i n x d x = − c o s x + c \int sinxdx=-cosx + c sinxdx=cosx+c
7 ( c o s x ) ′ = − s i n x (cosx)'=-sinx (cosx)=sinx d ( c o s x ) = − s i n x d x d(cosx)=-sinxdx d(cosx)=sinxdx ∫ c o s x d x = s i n x + c \int cosxdx=sinx + c cosxdx=sinx+c
8 ( t a n x ) ′ = s e c 2 x (tanx)'=sec^2x (tanx)=sec2x d ( t a n x ) = s e c 2 x d x d(tanx)=sec^2xdx d(tanx)=sec2xdx
9 ( c o t x ) ′ = − c s c 2 x (cotx)'=-csc^2x (cotx)=csc2x d ( c o t x ) = − c s c 2 x d x d(cotx)=-csc^2xdx d(cotx)=csc2xdx
10 ( s e c x ) ′ = s e c x ⋅ t a n x (secx)'=secx \cdot tanx (secx)=secxtanx d ( s e c x ) = s e c x ⋅ t a n x d x d(secx)=secx \cdot tanxdx d(secx)=secxtanxdx
11 ( c s c x ) ′ = − c s c x ⋅ c o t x (cscx)'=-cscx \cdot cotx (cscx)=cscxcotx d ( c s c x ) = − c s c x ⋅ c o t x d x d(cscx)=-cscx \cdot cotxdx d(cscx)=cscxcotxdx
12 ( a r c s i n x ) ′ = 1 1 − x 2 (arcsinx)'=\frac{1}{\sqrt{1-x^2}} (arcsinx)=1x2 1 d ( a r c s i n x ) = 1 1 − x 2 d x d(arcsinx)=\frac{1}{\sqrt{1-x^2}}dx d(arcsinx)=1x2 1dx ∫ 1 1 − x 2 d x = a r c c o s x + c \int \frac{1}{\sqrt{1-x^2}}dx=arccosx+c 1x2 1dx=arccosx+c
13 ( a r c c o s x ) ′ = − 1 1 − x 2 (arccosx)'=-\frac{1}{\sqrt{1-x^2}} (arccosx)=1x2 1 d ( a r c c o s x ) = − 1 1 − x 2 d x d(arccosx)=-\frac{1}{\sqrt{1-x^2}}dx d(arccosx)=1x2 1dx
14 ( a r c t a n x ) ′ = 1 1 + x 2 (arctanx)'=\frac{1}{1+x^2} (arctanx)=1+x21 d ( a r c t a n x ) = 1 1 + x 2 d x d(arctanx)=\frac{1}{1+x^2}dx d(arctanx)=1+x21dx ∫ 1 1 + x 2 d x = a r c t a n x + c \int \frac{1}{1+x^2}dx=arctanx+c 1+x21dx=arctanx+c
15 ( a r c c o t x ) ′ = − 1 1 + x 2 (arccotx)'=-\frac{1}{1+x^2} (arccotx)=1+x21 d ( a r c c o t x ) = − 1 1 + x 2 d x d(arccotx)=-\frac{1}{1+x^2}dx d(arccotx)=1+x21dx

补充(积分公式):
(1) ∫ t a n x d x = − l n ∣ c o s x ∣ + c \int tanxdx=-ln \left| cosx \right|+ c tanxdx=lncosx+c
(2) ∫ c o t x d x = l n ∣ s i n x ∣ + c \int cotxdx=ln \left| sinx \right|+c cotxdx=lnsinx+c
(3) ∫ s e c x d x = l n ∣ s e c x + t a n x ∣ + c \int secxdx=ln \left|secx+tanx \right|+c secxdx=lnsecx+tanx+c
(4) ∫ c s c x d x = l n ∣ c s c x − c o t x ∣ + c \int cscxdx=ln \left|cscx-cotx \right|+c cscxdx=lncscxcotx+c
(5) ∫ 1 a 2 + x 2 d x = 1 a a r c t a n x a + c \int \frac{1}{a^2+x^2}dx=\frac{1}{a} arctan\frac{x}{a}+c a2+x21dx=a1arctanax+c
(6) ∫ 1 x 2 − a 2 d x = 1 2 a l n ∣ x − a x + a ∣ + c \int \frac{1}{x^2-a^2}dx=\frac{1}{2a}ln \left|\frac{x-a}{x+a} \right|+c x2a21dx=2a1lnx+axa+c
(7) ∫ 1 a 2 − x 2 d x = a r c s i n x a + c \int \frac{1}{\sqrt{a^2-x^2}}dx=arcsin\frac{x}{a}+c a2x2 1dx=arcsinax+c
(8) ∫ 1 x 2 ± a 2 d x = l n ∣ x + x 2 ± a 2 ∣ + c \int \frac{1}{\sqrt{x^2\pm a^2 }}dx=ln \left|x+\sqrt{x^2\pm a^2} \right|+c x2±a2 1dx=lnx+x2±a2 +c

3 不定积分

3.1 第一类换元法——凑微分

∫ f [ φ ( x ) ] φ ′ ( x ) d x = F ( x ) + c \int f[\varphi(x)]\varphi'(x)dx=F(x)+c f[φ(x)]φ(x)dx=F(x)+c

要点:凑出中间变量的导数形式

常见换元积分形式:

序号积分等式换元公式
1 ∫ f ( a x + b ) d x = 1 a ∫ f ( a x + b ) d ( a x + b ) \int f(ax+b)dx=\frac{1}{a} \int f(ax+b)d(ax+b) f(ax+b)dx=a1f(ax+b)d(ax+b) u = a x + b u=ax+b u=ax+b
2 ∫ f ( x μ ) x μ − 1 d x = 1 μ ∫ f ( x μ ) d ( x μ ) \int f(x^\mu)x^{\mu-1}dx=\frac{1}{\mu} \int f(x^\mu)d(x^{\mu}) f(xμ)xμ1dx=μ1f(xμ)d(xμ) u = x μ u=x^\mu u=xμ
3 ∫ f ( l n x ) ⋅ 1 x d x = ∫ f ( l n x ) d ( l n x ) \int f(lnx) \cdot \frac{1}{x}dx=\int f(lnx)d(lnx) f(lnx)x1dx=f(lnx)d(lnx) u = l n x u=lnx u=lnx
4 ∫ f ( e x ) ⋅ e x d x = ∫ f ( e x ) d ( e x ) \int f(e^x) \cdot e^xdx=\int f(e^x)d(e^x) f(ex)exdx=f(ex)d(ex) u = e x u=e^x u=ex
5 ∫ f ( a x ) ⋅ a x d x = 1 l n a ∫ f ( a x ) d ( a x ) \int f(a^x) \cdot a^xdx=\frac{1}{lna} \int f(a^x)d(a^x) f(ax)axdx=lna1f(ax)d(ax) u = a x u=a^x u=ax
6 ∫ f ( s i n x ) ⋅ c o s x d x = ∫ f ( s i n x ) d ( s i n x ) \int f(sinx) \cdot cosxdx=\int f(sinx)d(sinx) f(sinx)cosxdx=f(sinx)d(sinx) u = s i n x u=sinx u=sinx
7 ∫ f ( c o s x ) ⋅ s i n x d x = − ∫ f ( c o s x ) d ( c o s x ) \int f(cosx) \cdot sinxdx=-\int f(cosx)d(cosx) f(cosx)sinxdx=f(cosx)d(cosx) u = c o s x u=cosx u=cosx
8 ∫ f ( t a n x ) ⋅ s e c 2 x d x = ∫ f ( t a n x ) d ( t a n x ) \int f(tanx) \cdot sec^2xdx=\int f(tanx)d(tanx) f(tanx)sec2xdx=f(tanx)d(tanx) u = t a n x u=tanx u=tanx
9 ∫ f ( c o t x ) ⋅ c s c 2 x d x = ∫ f ( c o t x ) d ( c o t x ) \int f(cotx) \cdot csc^2xdx=\int f(cotx)d(cotx) f(cotx)csc2xdx=f(cotx)d(cotx) u = c o t x u=cotx u=cotx
10 ∫ f ( a r c t a n x ) ⋅ 1 1 + x 2 d x = ∫ f ( a r c t a n x ) d ( a r c t a n x ) \int f(arctanx) \cdot \frac{1}{1+x^2} dx=\int f(arctanx)d(arctanx) f(arctanx)1+x21dx=f(arctanx)d(arctanx) u = a r c t a n x u=arctanx u=arctanx
11 ∫ f ( a r c s i n x ) ⋅ 1 1 − x 2 d x = ∫ f ( a r c s i n x ) d ( a r c s i n x ) \int f(arcsinx) \cdot \frac{1}{\sqrt{1-x^2}} dx=\int f(arcsinx)d(arcsinx) f(arcsinx)1x2 1dx=f(arcsinx)d(arcsinx) u = a r c s i n x u=arcsinx u=arcsinx
3.2 第二类换元法——变量替换

∫ f ( x ) d x = ∫ f [ φ ( t ) ] ⋅ φ ′ ( t ) d t = F ( t ) + C = F [ φ − 1 ( x ) ] + C \int f(x)dx=\int f[\varphi(t)] \cdot \varphi'(t)dt=F(t)+C=F[\varphi^{-1}(x)]+C f(x)dx=f[φ(t)]φ(t)dt=F(t)+C=F[φ1(x)]+C

要点:对根式函数的处理方法

原变量替换变量
f ( a + b x ) f(\sqrt{a+bx}) f(a+bx ) t = a + b x t=\sqrt{a+bx} t=a+bx
f ( a 2 − x 2 ) f(\sqrt{a^2-x^2}) f(a2x2 ) x = a s i n t x=asint x=asint
f ( a 2 + x 2 ) f(\sqrt{a^2+x^2}) f(a2+x2 ) x = a t a n t x=atant x=atant
f ( x 2 − a 2 ) f(\sqrt{x^2-a^2}) f(x2a2 ) x = a s e c t x=asect x=asect
3.3 分部积分

∫ u v ′ d x = u v − ∫ u ′ v d x = u v − ∫ v d u \int uv'dx=uv-\int u'vdx=uv-\int vdu uvdx=uvuvdx=uvvdu

类别形式分部取值
1 ∫ x m e x d x , ∫ x m s i n x d x , ∫ x m c o s x d x \int x^me^xdx,\int x^msinxdx,\int x^mcosxdx xmexdxxmsinxdxxmcosxdx u = x m u=x^m u=xm
2 ∫ x m l n x , ∫ x m a r c s i n x d x , ∫ x m a r c t a n x d x \int x^mlnx,\int x^marcsinxdx,\int x^marctanxdx xmlnxxmarcsinxdxxmarctanxdx v = x m v=x^m v=xm
3 ∫ e a x s i n b x d x , ∫ e a x c o s b x d x \int e^{ax}sinbxdx,\int e^{ax}cosbxdx eaxsinbxdxeaxcosbxdx u = e a x , s i n x , c o s x u=e^{ax},sinx,cosx u=eax,sinx,cosx 均可

u u u的选取技巧(优先原则):“对数函数、反函数、幂函数、三角函数、指数函数”(对、反、幂、三、指)

3.4 有理函数的积分方法——高斯分解

解决题型: ∫ P n ( x ) P m ( x ) d x \int \frac{P_n(x)}{P_m(x)}dx Pm(x)Pn(x)dx,其中 P n ( x ) P_n(x) Pn(x) P m ( x ) P_m(x) Pm(x)分别是 n n n次和 m m m次的多项式( n < m n<m n<m).

形式高斯分解
f ( x ) = P ( x ) ( x − a ) 2 ( x − b ) f(x)=\frac{P(x)}{(x-a)^2(x-b)} f(x)=(xa)2(xb)P(x) f ( x ) = P ( x ) ( x − a ) 2 ( x − b ) = A x − a + B ( x − a ) 2 + C x − b f(x)=\frac{P(x)}{(x-a)^2(x-b)}=\frac{A}{x-a}+\frac{B}{(x-a)^2}+\frac{C}{x-b} f(x)=(xa)2(xb)P(x)=xaA+(xa)2B+xbC
f ( x ) = P ( x ) ( x − a ) ( x 2 + b x + C ) f(x)=\frac{P(x)}{(x-a)(x^2+bx+C)} f(x)=(xa)(x2+bx+C)P(x) f ( x ) = P ( x ) ( x − a ) ( x 2 + b x + C ) = A x − a + B x + C x 2 + b x + c f(x)=\frac{P(x)}{(x-a)(x^2+bx+C)}=\frac{A}{x-a}+\frac{Bx+C}{x^2+bx+c} f(x)=(xa)(x2+bx+C)P(x)=xaA+x2+bx+cBx+C

4 微分方程

4.1 一阶微分方程
名称形式解法
可分离变量微分方程 M ( x ) d x = N ( y ) d y M(x)dx=N(y)dy M(x)dx=N(y)dy两边同时积分
齐次方程 d y d x = f ( y x ) \frac{dy}{dx}=f(\frac{y}{x}) dxdy=f(xy)①令 u = y x u=\frac{y}{x} u=xy
y = u x y=ux y=ux
u + x d u d x = f ( u ) u+x\frac{du}{dx}=f(u) u+xdxdu=f(u)
d u f ( u ) − u = d x x \frac{du}{f(u)-u}=\frac{dx}{x} f(u)udu=xdx
一阶齐次线性微分方程 y ′ + P ( x ) y = 0 y'+P(x)y=0 y+P(x)y=0分离变量法
一阶非齐次线性微分方程 y ′ + P ( x ) y = Q ( x ) y'+P(x)y=Q(x) y+P(x)y=Q(x) y = e − ∫ P ( x ) d x ( e ∫ P ( x ) d x ⋅ Q ( x ) d x + C ) y=e^{-\int P(x)dx}(e^{\int P(x)dx} \cdot Q(x)dx+C) y=eP(x)dx(eP(x)dxQ(x)dx+C)
可降解高阶微分方程(1) y ( n ) = f ( x ) y^{(n)}=f(x) y(n)=f(x)逐次积分
可降解高阶微分方程(2) y ′ ′ = f ( x , y ′ ) y''=f(x,y') y=f(x,y)
y ′ ′ , y ′ , x y'',y',x y,y,x,但不能含有 y y y
①换元法:设 y ′ = p , y ′ ′ = p ′ = d p d x y'=p,y''=p'=\frac{dp}{dx} y=py=p=dxdp
②分离变量法
伯努利方程 y ’ + P ( x ) y = Q ( x ) y ( n ) y’+P(x)y=Q(x)y^{(n)} y+P(x)y=Q(x)y(n)①令 z = y 1 − n z=y^{1-n} z=y1n
z ′ + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) z'+(1-n)P(x)z=(1-n)Q(x) z+(1n)P(x)z=(1n)Q(x)
4.2 二阶微分方程

(1) 二阶常系数齐次线性微分方程

  • 形式: y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y+py+qy=0
  • 通解结构: y 1 , y 2 y_1,y_2 y1y2是微分方程的特解,且 y 1 y 2 ≠ k \frac{y_1}{y_2} \not= k y2y1=k,则 y = C 1 y 1 + C 2 y 2 y=C_1y_1+C_2y_2 y=C1y1+C2y2是微分方程的通解
  • 求解方法总结:
 1. 提取特征方程; 
 2. 解特征方程; 
 3. 判断特征方程类型; 
 4. 根据特征根与通解关系表带入特征根计算得出结果。
  • 特征根与通解关系表
特征根通解
r 1 ≠ r 2 r_1 \not= r_2 r1=r2 y = c 1 e r 1 x + c 2 e r 2 x y=c_1e^{r_1x}+c_2e^{r_2x} y=c1er1x+c2er2x
r 1 = r 2 = k r_1=r_2=k r1=r2=k y = ( c 1 + c 2 x ) e k x y=(c_1+c_2x)e^{kx} y=(c1+c2x)ekx
r = α ± β i r=\alpha \pm \beta i r=α±βi y = e α x ( c 1 s i n β x + c 2 c o s β x ) y=e^{\alpha x}(c_1sin\beta x+c_2cos\beta x) y=eαx(c1sinβx+c2cosβx)
  • 特征方程与特征根的推导

y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y+py+qy=0,其中 p , q p,q p,q均为常数

y = e r x y=e^{rx} y=erx,则 y ′ = r e r x , y ′ ′ = r 2 e r x y'=re^{rx},y''=r^2e^{rx} y=rerxy=r2erx

带入微分方程可得:

r 2 e r x + p ⋅ r e r x + q ⋅ e r x = 0 r^2e^{rx}+p \cdot re^{rx}+q \cdot e^{rx}=0 r2erx+prerx+qerx=0

( r 2 + p ⋅ r + q ) e r x = 0 (r^2+p \cdot r+q)e^{rx}=0 (r2+pr+q)erx=0

r 2 + p ⋅ r + q = 0 r^2+p \cdot r+q=0 r2+pr+q=0 (特征方程)

r = − b ± b 2 − 4 a c 2 a r=\frac{-b \pm \sqrt{b^2-4ac}}{2a} r=2ab±b24ac (特征根)


  • 例题

求:微分方程 y ′ ′ + 2 y ′ + 3 y = 0 y''+2y'+3y=0 y+2y+3y=0的通解.

解:由题可知特征方程为: r 2 + 2 r + 3 = 0 r^2+2r+3=0 r2+2r+3=0

由配方法得: ( r + 1 ) 2 = − 2 (r+1)^2=-2 (r+1)2=2

r = − 1 ± − 2 = − 1 ± 2 ⋅ − 1 = − 1 ± 2 i r=-1 \pm \sqrt{-2}=-1 \pm \sqrt{2}\cdot \sqrt{-1}=-1 \pm \sqrt{2}i r=1±2 =1±2 1 =1±2 i

∴ \therefore 特征根是一对共轭复根

∴ α = − 1 , β = 2 \therefore \alpha = -1,\beta=\sqrt{2} α=1β=2

∴ y = e − x ( c 1 s i n 2 x + c 2 c o s 2 x ) \therefore y=e^{-x}(c_1sin\sqrt{2}x+c_2cos\sqrt{2}x) y=ex(c1sin2 x+c2cos2 x)


(2) 二阶常系数非齐次线性微分方程

  • 形式: y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y+py+qy=f(x)
  • 通解结构: y = y ∗ + y ‾ y=y^* + \overline{y} y=y+y
    • y ∗ y^* y y ′ ′ + p y ′ + q y = f ( x ) y''+py'+qy=f(x) y+py+qy=f(x)的一个特解
    • y ‾ \overline{y} y是对应的齐次微分方程 y ′ ′ + p y ′ + q y = 0 y''+py'+qy=0 y+py+qy=0的通解
  • 特解 y ∗ y^* y的求解方法总结:
 1.写出特解的组成;
 2.分别求解特解成分的未知参数:Qn(x)、k; 
 3.将求出的参数值带入特解。

类型一

题型: y ′ ′ + p y ′ + q y = P n ( x ) e α x y''+py'+qy=P_n(x)e^{\alpha x} y+py+qy=Pn(x)eαx P n ( x ) P_n(x) Pn(x) n n n次多项式, α \alpha α为已知值

特解: y ∗ = x k ⋅ Q n ( x ) ⋅ e α x y^*=x^k \cdot Q_n(x) \cdot e^{\alpha x} y=xkQn(x)eαx

待解: Q n ( x ) , k Q_n(x),k Qn(x)k

Q n ( x ) Q_n(x) Qn(x)是最高次幂为 n n n的多项式的标准形式

最高次幂最高次幂为 n n n的多项式的标准形式
0 a a a
1 a x + b ax+b ax+b
2 a x 2 + b x + c ax^2+bx+c ax2+bx+c

k k k 由特征方程的特征根与 α \alpha α的关系决定

α \alpha α与特征根的关系 k k k的取值
α \alpha α 不是特征根 k = 0 k=0 k=0
α \alpha α 是特征单根 k = 1 k=1 k=1
α \alpha α与特征重根 k = 2 k=2 k=2

类型二

题型: y ′ ′ + p y ′ + q y = e α x ( A s i n β x + B c o s β x ) y''+py'+qy=e^{\alpha x}(Asin\beta x+Bcos\beta x) y+py+qy=eαx(Asinβx+Bcosβx) α , β \alpha,\beta αβ为已知值

特解: y ∗ = x k ⋅ e α x ⋅ ( c s i n β x + d c o s β x ) y^*=x^k \cdot e^{\alpha x} \cdot(csin\beta x+dcos\beta x) y=xkeαx(csinβx+dcosβx) c , d c,d cd为常数,无需求解

待解: k k k

k k k 由特征方程的特征根与 α + β i \alpha + \beta i α+βi的关系决定

α + β i \alpha + \beta i α+βi与特征根的关系 k k k的取值
α + β i \alpha + \beta i α+βi 不是特征根 k = 0 k=0 k=0
α + β i \alpha + \beta i α+βi 是特征单根 k = 1 k=1 k=1

  • 例题

y ′ ′ − 4 y ′ + 4 y = ( 2 x + 1 ) e 2 x y''-4y'+4y=(2x+1)e^{2x} y4y+4y=(2x+1)e2x的特解 y ∗ y^* y应设为?

解:由题可知

特解组成为: y ∗ = x k ( a x + b ) e 2 x y^*=x^k(ax+b)e^{2x} y=xk(ax+b)e2x

特征方程为: r 2 − 4 r + 4 = 0 r^2-4r+4=0 r24r+4=0

解得特征根: r 1 = r 2 = 2 r_1=r_2=2 r1=r2=2

∵ α = 2 = r 1 = r 2 \because \alpha =2=r_1=r_2 α=2=r1=r2

∴ α \therefore \alpha α 是特征方程的特征重根

∴ k = 2 \therefore k=2 k=2

∴ \therefore 特解应设为: y ∗ = x 2 ( a x + b ) e 2 x y^*=x^2(ax+b)e^{2x} y=x2(ax+b)e2x


注意:二阶常系数非齐次线性微分方程的通解由两部分组成( y = y ∗ + y ‾ y=y^* + \overline{y} y=y+y),求解时应注意解得完整性!例题只给出了二阶常系数非齐次线性微分方程特解的步骤,并不是完整的二阶常系数非齐次线性微分方程题型,对应的齐次方程的通解请参考4.2(1)。

5 三角函数公式大全

5.1 基本三角公式定义
名称函数名名称函数名名称函数名
正弦 s i n A = a c sinA = \frac{a}{c} sinA=ca余弦 c o s A = b c cosA = \frac{b}{c} cosA=cb正切 t a n A = a b tanA = \frac{a}{b} tanA=ba
正割 s e c A = 1 c o s A secA = \frac{1}{cosA} secA=cosA1余割 c s c A = 1 s i n A cscA = \frac{1}{sinA} cscA=sinA1余切 c o t A = 1 t a n A cotA = \frac{1}{tanA} cotA=tanA1
5.2 诱导公式
s i n ( − a ) = − s i n ( a ) sin(-a)=-sin(a) sin(a)=sin(a) c o s ( − a ) = c o s ( a ) cos(-a)=cos(a) cos(a)=cos(a)
s i n ( π 2 − a ) = c o s ( a ) sin(\frac{\pi}{2}-a)=cos(a) sin(2πa)=cos(a) c o s ( π 2 − a ) = s i n ( a ) cos(\frac{\pi}{2}-a)=sin(a) cos(2πa)=sin(a)
s i n ( π 2 + a ) = c o s ( a ) sin(\frac{\pi}{2}+a)=cos(a) sin(2π+a)=cos(a) c o s ( π 2 + a ) = − s i n ( a ) cos(\frac{\pi}{2}+a)=-sin(a) cos(2π+a)=sin(a)
s i n ( π − a ) = s i n ( a ) sin(\pi-a)=sin(a) sin(πa)=sin(a) c o s ( π − a ) = − c o s ( a ) cos(\pi-a)=-cos(a) cos(πa)=cos(a)
s i n ( π + a ) = − s i n ( a ) sin(\pi+a)=-sin(a) sin(π+a)=sin(a) c o s ( π + a ) = − c o s ( a ) cos(\pi+a)=-cos(a) cos(π+a)=cos(a)
t g A = t a n A = s i n A / c o s A tgA=tanA=sinA/cosA tgA=tanA=sinA/cosA口诀:奇变偶不变,符号看象限
5.3 两角和与差的三角函数
s i n ( a + b ) = s i n ( a ) c o s ( b ) + c o s ( α ) s i n ( b ) sin(a+b)=sin(a)cos(b)+cos(α)sin(b) sin(a+b)=sin(a)cos(b)+cos(α)sin(b) c o s ( a + b ) = c o s ( a ) c o s ( b ) − s i n ( a ) s i n ( b ) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) cos(a+b)=cos(a)cos(b)sin(a)sin(b)
s i n ( a − b ) = s i n ( a ) c o s ( b ) − c o s ( a ) s i n ( b ) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) sin(ab)=sin(a)cos(b)cos(a)sin(b) c o s ( a − b ) = c o s ( a ) c o s ( b ) + s i n ( a ) s i n ( b ) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) cos(ab)=cos(a)cos(b)+sin(a)sin(b)
t a n ( a + b ) = t a n ( a ) + t a n ( b ) 1 − t a n ( a ) t a n ( b tan(a+b)=\frac{tan(a)+tan(b)}{1-tan(a)tan(b} tan(a+b)=1tan(a)tan(btan(a)+tan(b) t a n ( a − b ) = t a n ( a ) − t a n ( b ) 1 + t a n ( a ) t a n ( b ) tan(a-b)=\frac{tan(a)-tan(b)}{1+tan(a)tan(b)} tan(ab)=1+tan(a)tan(b)tan(a)tan(b)
5.4 和差化积公式
s i n ( a ) + s i n ( b ) = 2 s i n a + b 2 c o s a − b 2 sin(a)+sin(b)=2sin \frac{a+b}{2}cos \frac{a-b}{2} sin(a)+sin(b)=2sin2a+bcos2ab s i n ( a ) − s i n ( b ) = 2 c o s a + b 2 s i n a − b 2 sin(a)-sin(b)=2cos \frac{a+b}{2}sin \frac{a-b}{2} sin(a)sin(b)=2cos2a+bsin2ab
c o s ( a ) + c o s ( b ) = 2 c o s a + b 2 c o s a − b 2 cos(a)+cos(b)=2cos \frac{a+b}{2}cos \frac{a-b}{2} cos(a)+cos(b)=2cos2a+bcos2ab c o s ( a ) − c o s ( b ) = − 2 s i n a + b 2 s i n a − b 2 cos(a)-cos(b)=-2sin \frac{a+b}{2}sin \frac{a-b}{2} cos(a)cos(b)=2sin2a+bsin2ab
5.5 积化和差公式
s i n ( a ) s i n ( b ) = − 1 2 [ c o s ( a + b ) − c o s ( a − b ) ] sin(a)sin(b)=-\frac{1}{2}[cos(a+b)-cos(a-b)] sin(a)sin(b)=21[cos(a+b)cos(ab)] c o s ( a ) c o s ( b ) = 1 2 [ c o s ( a + b ) + c o s ( a − b ) ] cos(a)cos(b)=\frac{1}{2}[cos(a+b)+cos(a-b)] cos(a)cos(b)=21[cos(a+b)+cos(ab)]
s i n ( a ) c o s ( b ) = 1 2 [ s i n ( a + b ) + s i n ( a − b ) ] sin(a)cos(b)=\frac{1}{2}[sin(a+b)+sin(a-b)] sin(a)cos(b)=21[sin(a+b)+sin(ab)] c o s ( a ) s i n ( b ) = 1 2 [ s i n ( a + b ) − s i n ( a − b ) ] cos(a)sin(b)=\frac{1}{2}[sin(a+b)-sin(a-b)] cos(a)sin(b)=21[sin(a+b)sin(ab)]
5.6 二倍角公式
s i n ( 2 a ) = 2 s i n ( a ) c o s ( a ) sin(2a)=2sin(a)cos(a) sin(2a)=2sin(a)cos(a) c o s ( 2 a ) = c o s 2 ( a ) − s i n 2 ( a ) = 2 c o s 2 ( a ) − 1 = 1 − 2 s i n 2 ( a ) cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a) cos(2a)=cos2(a)sin2(a)=2cos2(a)1=12sin2(a)
t a n ( 2 A ) = 2 t a n A 1 − t a n 2 A tan(2A)=\frac{2tanA}{1-tan^2A} tan(2A)=1tan2A2tanA
5.7 半角公
s i n ( a 2 ) = 1 − c o s ( a ) 2 sin(\frac{a}{2})=\sqrt{\frac{1-cos(a)}{2}} sin(2a)=21cos(a) c o s ( a 2 ) = 1 + c o s ( a ) 2 cos(\frac{a}{2})=\sqrt{\frac{1+cos(a)}{2}} cos(2a)=21+cos(a)
t a n ( a 2 ) = 1 − c o s ( a ) s i n ( a ) = s i n ( a ) 1 + c o s ( a ) tan(\frac{a}{2})=\frac{1-cos(a)}{sin(a)}=\frac{sin(a)}{1+cos(a)} tan(2a)=sin(a)1cos(a)=1+cos(a)sin(a) c o t ( a 2 ) = 1 + c o s ( a ) 1 − c o s ( a ) cot(\frac{a}{2})=\sqrt{\frac{1+cos(a)}{1-cos(a)}} cot(2a)=1cos(a)1+cos(a)
5.8 万能公式
s i n ( a ) = 2 t a n ( a 2 ) 1 + t a n 2 ( a 2 ) sin(a)= \frac{2tan(\frac{a}{2})}{1+tan^2(\frac{a}{2})} sin(a)=1+tan2(2a)2tan(2a) c o s ( a ) = 1 − t a n 2 ( a 2 ) 1 + t a n 2 ( a 2 ) cos(a)= \frac{1-tan^2(\frac{a}{2})}{1+tan^2(\frac{a}{2})} cos(a)=1+tan2(2a)1tan2(2a)
t a n ( a ) = 2 t a n ( a 2 ) 1 − t a n 2 ( a 2 ) tan(a)= \frac{2tan(\frac{a}{2})}{1-tan^2(\frac{a}{2})} tan(a)=1tan2(2a)2tan(2a) s i n 2 ( a ) + c o s 2 ( a ) = 1 sin^2(a)+cos^2(a)=1 sin2(a)+cos2(a)=1
5.9 其它公式
a ⋅ s i n ( a ) + b ⋅ c o s ( a ) = a 2 + b 2 s i n ( a + c ) [ 其 中 , t a n ( c ) = b a ] a\cdot sin(a)+b\cdot cos(a)=\sqrt{a^2+b^2}sin(a+c) [其中,tan(c)=\frac{b}{a}] asin(a)+bcos(a)=a2+b2 sin(a+c)[tan(c)=ab]
a ⋅ s i n ( a ) − b ⋅ c o s ( a ) = a 2 + b 2 c o s ( a − c ) [ 其 中 , t a n ( c ) = a b ] a\cdot sin(a)-b\cdot cos(a)=\sqrt{a^2+b^2}cos(a-c) [其中,tan(c)=\frac{a}{b}] asin(a)bcos(a)=a2+b2 cos(ac)[tan(c)=ba]
1 + s i n ( a ) = [ s i n ( a 2 ) + c o s ( a 2 ) ] 2 1+sin(a)=[sin(\frac{a}{2})+cos(\frac{a}{2})]^2 1+sin(a)=[sin(2a)+cos(2a)]2
1 − s i n ( a ) = [ s i n ( a 2 ) − c o s ( a 2 ) ] 2 1-sin(a)=[sin(\frac{a}{2})-cos(\frac{a}{2})]^2 1sin(a)=[sin(2a)cos(2a)]2
5.10 其他非重点
  • c s c ( a ) = 1 s i n ( a ) csc(a)=\frac{1}{sin(a)} csc(a)=sin(a)1
  • s e c ( a ) = 1 c o s ( a ) sec(a)=\frac{1}{cos(a)} sec(a)=cos(a)1
5.11 双曲函数
s i n h ( a ) = e a − e − a 2 sinh(a)=\frac{e^a-e^{-a}}{2} sinh(a)=2eaea s i n h ( a ) = e a + e − a 2 sinh(a)=\frac{e^a+e^{-a}}{2} sinh(a)=2ea+ea
t g h ( a ) = t a n h ( a ) = s i n h ( a ) c o s h ( a ) tgh(a)=tanh(a)=\frac{sinh(a)}{cosh(a)} tgh(a)=tanh(a)=cosh(a)sinh(a)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值