微积分之积分
一、不定积分
不定积分本质上就是导数的逆运算
注意!许多函数的积分是算不出来的,所以,不要随便问别人一个函数的积分
由于常数的导数为 0 0 0,所以,一个不定积分的结果会是这样的: ∫ f ( x ) d x = g ( x ) + C \int f(x)dx=g(x)+C ∫f(x)dx=g(x)+C,其中, C C C是一个常数
1、不定积分运算法则
(1)加减法
∫ f ( x ) d x + ∫ g ( x ) d x = ∫ ( f ( x ) + g ( x ) ) d x \int f(x)dx+\int g(x)dx=\int \left(f(x)+g(x)\right)dx ∫f(x)dx+∫g(x)dx=∫(f(x)+g(x))dx
(2)乘除法
然而并没有这种东西……
2、求不定积分的常见方法
(1)第一类换元法
我之前讲过一个求导的公式—— ( f ( g ( x ) ) ) ′ = f ′ ( g ( x ) ) × g ‘ ( x ) (f(g(x)))'=f'(g(x))\times g‘(x) (f(g(x)))′=f′(g(x))×g‘(x)(忘了?不知道?点这里),那么我们可以得到 ∫ f ′ ( g ( x ) ) × g ’ ( x ) d x = f ( g ( x ) ) \int f'(g(x))\times g’(x)dx=f(g(x)) ∫f′(g(x))×g’(x)dx=f(g(x)),把 g ‘ ( x ) g‘(x) g‘(x)塞到 d x dx dx中变成 d g ( x ) dg(x) dg(x),也就是 ∫ f ′ ( g ( x ) ) × d g ( x ) = f ( g ( x ) ) \int f'(g(x))\times dg(x)=f(g(x)) ∫f′(g(x))×dg(x)=f(g(x))——这个公式就是第一类换元法
第一类换元法的应用很广,接下来我举几个例子供大家参考
例1
求 ∫ s i n x ⋅ c o s x d x \int sinx\cdot cosxdx ∫sinx⋅cosxdx
法一: ∫ s i n x ⋅ c o s x d x = ∫ s i n x ⋅ ( s i n x ) ′ d x = ∫ s i n x d s i n x = 1 2 ( s i n x ) 2 + C \int sinx\cdot cosxdx=\int sinx\cdot (sinx)'dx=\int sinxdsinx=\frac{1}{2}(sinx)^2+C ∫sinx⋅cosxdx=∫sinx⋅(sinx)′dx=∫sinxdsinx=21(sinx)2+C
法二: ∫ 1 2 s i n 2 x d x = ∫ 1 4 s i n 2 x d 2 x = − 1 4 c o s 2 x + C \int \frac{1}{2}sin2xdx=\int \frac{1}{4}sin2xd2x=-\frac{1}{4}cos2x+C ∫21sin2xdx=∫41sin2xd2x=−41cos2x+C
注意!+C是不可省略的!+C是不可省略的!+C是不可省略的!
两种方法做的结果看似不一样,其实是一样的,只是在没有 + C +C +C的情况下常数不同
这就是我强调要 + C +C +C的原因
例2
求 ∫ d x 1 + e x \int \frac{dx}{1+e^x} ∫1+exdx
∫ d x 1 + e x = ∫ e x d x ( 1 + e x ) e x = ∫ d e x e x ( 1 + e x ) = ∫ ( 1 e x − 1 e x + 1 ) d e x = l n e x − l n ( 1 + e x ) + C = x − l n ( 1 + e x ) + C \int \frac{dx}{1+e^x}=\int \frac{e^xdx}{(1+e^x)e^x}=\int \frac{de^x}{e^x(1+e^x)}=\int \left(\frac{1}{e^x}-\frac{1}{e^x+1}\right)de^x=lne^x-ln\left(1+e^x\right)+C=x-ln\left(1+e^x\right)+C ∫1+exdx=∫(1+ex)exexdx=∫ex(1+ex)dex=∫(ex1−ex+11)dex=lnex−ln(1+ex)+C=x−ln(1+ex)+C
这一题巧妙地运用了 ( e x ) ′ = e x \left(e^x\right)'=e^x (ex)′=ex的特殊性,再用第一类换元法和裂项解决
(2)第二类换元法
第二类换元法和第一类换元法很像,就是最后一步的变形: ∫ f ′ ( g ( x ) ) × g ’ ( x ) d x = ∫ f ′ ( g ( x ) ) × d g ( x ) \int f'(g(x))\times g’(x)dx=\int f'(g(x))\times dg(x) ∫f′(g(x))×g’(x)dx=∫f′(g(x))×dg(x)
第二类换元法一般会和三角换元有关,基本上都是那种带根号的式子
例3
求 ∫ d x 1 − x 2 \int \frac{dx}{\sqrt{1-x^2}} ∫1−x2dx
设 x = s i n θ x=sin\theta x=sinθ
∫ d x 1 − x 2 = ∫ d s i n θ c o s θ = ∫ c o s θ d θ c o s θ = ∫ d θ = θ + C = a r c s i n x + C \int \frac{dx}{\sqrt{1-x^2}}=\int \frac{dsin\theta}{cos\theta}=\int \frac{cos\theta d\theta}{cos\theta}=\int d\theta=\theta+C=arcsinx+C ∫1−x2dx=∫cosθdsinθ=∫cosθcosθdθ=∫dθ=θ+C=arcsinx+C
这就是第二类换元法的应用,将 x x x巧妙地进行三角换元,得到最后消掉的局面
大家不要小看这种换元方法,第二类换元法的题目可以出得很难
例4
求 ∫ t 2 d t t − 5 3 \int \frac{t^2dt}{\sqrt[3]{t-5}} ∫3t−5t2dt
设 x = t − 5 3 x=\sqrt[3]{t-5} x=3t−5
∫ t 2 d t t − 5 3 = ∫ ( x 6 + 10 x 3 + 25 ) ⋅ 3 x 2 d x x = 3 ∫ ( x 7 + 10 x 4 + 25 x ) d x = 3 ⋅ ( 1 8 x 8 + 2 x 5 + 25 2 x 2 ) + C \int \frac{t^2dt}{\sqrt[3]{t-5}}=\int \frac{(x^6+10x^3+25)\cdot 3x^2dx}{x}=3\int (x^7+10x^4+25x)dx=3\cdot (\frac{1}{8}x^8+2x^5+\frac{25}{2}x^2)+C ∫3t−5t2dt=∫x(x6+10x3+25)⋅3x2dx=3∫(x7+10x4+25x)dx=3⋅(81x8+2x5+225x2)+C(答案太丑了,不写了)
一看到题目,可能很多人就傻眼了——这东西能积分吗?答案是能的,只是很麻烦
看到题目的第一反应应该是先把那个恶心的根号换元,接着能不能做再说
(3)部分积分法
在求导的时候,我们学过一个公式—— ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)′=u′v+uv′,我们把两边同时积分,就可以得到 ∫ (