1-光学中的数学基础

1 为什么要学数学?

光学知识体系复杂多样,宏观微观抽象交杂,光是电磁波,而电磁波的本质是波,波的本质是三角函数。因此,想要学好光学必须学好数学基础,三角函数及其背后的物理意义,虽然三角函数是光学中基础的基础,但在理论计算中计算不方便,常使用复变函数中的欧拉公式。因而,三角函数矢量计算复变函数基础等三大部分数学基础是入门光学的必备数学知识基础。

2 三角函数

单纯从数学的角度上来看,三角函数 f ( x ) = A c o s ( ω x + φ ) f(x)=Acos(\omega x+\varphi) f(x)=Acos(ωx+φ) 从本质上来说三角函数是角度的函数,即自变量 x x x 是一个角度, ( ω x + φ ) (\omega x+\varphi) (ωx+φ)是一个角度, φ \varphi φ 也是一个角度,而 A A A 是决定振动的大小,也即下图中左边圆的半径。

在这里插入图片描述

从物理的角度上来看,三角函数是简谐波,因此,三角函数的各个参数在物理上做如下定义:

  • A A A :振幅,表示振动幅度的最大值;
  • ω x + φ \omega x+\varphi ωx+φ :相位,表示 x x x 所处位置的角度大小;
  • φ \varphi φ :初相位:表示 x = 0 x=0 x=0 时的角度大小,即还没开始运动时的初始角度;
  • ω \omega ω:角速度,表示旋转一周的速度。

在光学中最常见的波函数是: f ( x ) = A c o s ( ω t + k ⃗ x + φ ) f(x)=Acos(\omega t +\vec{k}x+\varphi) f(x)=Acos(ωt+k x+φ),该波函数中包含了时间 t t t 和空间 x x x 两个纬度的变量,在研究光波时,常将一个变量固定而研究另一个变量的波函数。其中: k ⃗ \vec{k} k 是波矢,表示光波前进的方向,在数值上 k = 2 π λ k=\frac{2\pi}{\lambda} k=λ2π

3 矢量计算

标量和矢量都可以表示数量的大小,但标量仅仅是一个数值,只能表示大小,而矢量(向量)既可以表示大小,同时也可以表示方向。因此,标量只表示一个数值大小,方向是任意的,而矢量不仅表示大小,同时也确定了其所指的方向。矢量在一定程度上更方便计算和分析,比如力的分解与合成光的分解与合成。掌握矢量的本质有利于学习偏振性、晶体光学等知识。

在数学上,常用一条有方向的线段来表示矢量(向量),线段长度表示矢量的大小,叫做向量的模,线段方向表示矢量的方向。如下图所示,以 A A A 为起点、 B B B 为终点的有向线段所表示的向量记作: A B ⃗ \vec{AB} AB ,也可用带箭头的字母表示: a ⃗ \vec{a} a 。在数学上只研究与起点无关的向量,称为自由向量,简称向量。
在这里插入图片描述
矢量计算基础过于既简单这里不作详细介绍,学者自行查阅相关的数学书籍。

4 复数基础

4.1 复数概念
  • z = x + y i z=x+yi z=x+yi 称为复数,其中 x x x 称为实部,是一个实数,与实数无本质区别, y i yi yi 是虚部, i i i 是虚数因子,定义为: i 2 = − 1 i^2=-1 i2=1
  • z ˉ = x − y i \bar{z}=x-yi zˉ=xyi 称为复数 z z z 的共轭复数;
  • 复数的模 ∣ z ∣ |z| z:实部与虚部的平方和的正的平方根的值, ∣ z ∣ = x 2 + y 2 |z|=\sqrt{x^2+y^2} z=x2+y2 ;
  • 辐角 A r g ( z ) Arg(z) Arg(z):在复平面中实轴与复数向量的夹角,其中在 [ − π , π ] [-\pi,\pi] [π,π]范围内的辐角称为主辐角 a r g ( z ) arg(z) arg(z)
4.2 复数的三种表达形式
  • 一般式: z = x + y i z=x+yi z=x+yi
  • 指数式: z = r e i θ z=re^{i\theta} z=reiθ
  • 三角函数式: z = r ( c o s θ + i s i n θ ) z=r(cos\theta+isin\theta) z=r(cosθ+isinθ)

其中:

  • 模: ∣ z ∣ = r |z|=r z=r
  • 辐角: A r g ( z ) = θ Arg(z)=\theta Arg(z)=θ

由此有如下结论:

  • x = r c o s θ x=rcos\theta x=rcosθ
  • y = r s i n θ y=rsin\theta y=rsinθ
  • z = r e i θ = r ( c o s θ + i s i n θ ) z=re^{i\theta}=r(cos\theta+isin\theta) z=reiθ=r(cosθ+isinθ)
  • e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ(欧拉公式)
4.3 复数计算

设有两个复数: z 1 = a + b i z_1=a+bi z1=a+bi z 2 = c + d i z_2=c+di z2=c+di,则有如下运算法则:

  • 加法: z = z 1 + z 2 = ( a + c ) + ( b + d ) i z=z_1+z_2=(a+c)+(b+d)i z=z1+z2=(a+c)+(b+d)i
  • 减法: z = z 1 − z 2 = ( a − c ) + ( b − d ) i z=z_1-z_2=(a-c)+(b-d)i z=z1z2=(ac)+(bd)i
  • 乘法: z = z 1 × z 2 = a c + a d i + c b i + b d i 2 = ( a c − b d ) + ( a d + b c ) i z=z_1 \times z_2=ac+adi+cbi+bdi^2=(ac-bd)+(ad+bc)i z=z1×z2=ac+adi+cbi+bdi2=(acbd)+(ad+bc)i
  • 除法: z = z 1 z 2 = a + b i c + d i = ( a + b i ) ( c − d i ) ( c + d i ) ( c − d i ) = a c − a d i + b c i − b d i 2 c 2 + d 2 = ( a c + b d ) + ( b c − a d ) i c 2 + d 2 = a c + b d c 2 + d 2 + b c − a d c 2 + d 2 i z=\frac{z_1}{z_2}=\frac{a+bi}{c+di}=\frac{(a+bi)(c-di)}{(c+di)(c-di)}=\frac{ac-adi+bci-bdi^2}{c^2+d^2}=\frac{(ac+bd)+(bc-ad)i}{c^2+d^2}=\frac{ac+bd}{c^2+d^2}+\frac{bc-ad}{c^2+d^2}i z=z2z1=c+dia+bi=(c+di)(cdi)(a+bi)(cdi)=c2+d2acadi+bcibdi2=c2+d2(ac+bd)+(bcad)i=c2+d2ac+bd+c2+d2bcadi

乘法与除法使用辐角和模长的计算方法:

  • 乘法:辐角相加,模长相乘
  • 除法:辐角相减,模长相除
4.3 复平面

如下图所示以实部为实轴,虚部为虚轴的直角坐标称为复平面,下面四幅图分别给出了复数的四则运算法则的几何意义:

  • 加法:【平移】四边形法则
  • 减法:【平移】三角形法则
  • 乘法:
    • 旋转:辐角相加
    • 放大:模长相乘
  • 除法:
    • 旋转:辐角相减
    • 缩小:模长相除
      在这里插入图片描述

5 欧拉公式

结合复数的指数表示法: z = r e i θ z=re^{i\theta} z=reiθ指数表示法: z = r ( c o s θ + i s i n θ ) z=r(cos\theta+isin\theta) z=r(cosθ+isinθ),两边同时除以模 r r r 后得欧拉公式: e i θ = c o s θ + i s i n θ e^{i \theta}=cos\theta+isin\theta eiθ=cosθ+isinθ

光是电磁波,电磁波的波函数是余弦函数,因此,常用复数的实部表示光波函数。既然有三角函数可以表示波函数,那为什么还非得要用复数来表示波函数呢?

这得益于复数具有矢量的性质,在运算方面更优异于三角函数,这在光强、光的合成等光学理论计算中有重要应用。

愿各位读者学有所获,由于编者水平有限,文中难免存在一些缺点和错误,殷切期望读者批评指正。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
信息光学数学实验室(PDF)是一个致力于研究信息光学数学相关领域的实验室。信息光学是研究光和信息的相互关系,将光学和信息技术结合起来,用光信号传输、处理和存储信息。数学作为一门基础学科,则在信息处理和光学系统建模发挥着重要作用。 实验室主要研究方向包括光学传递函数、信息传输、光学图像处理和光学系统模拟等。通过开展实验和理论研究,探索信息光学系统的性质和与数学的关联。实验室拥有先进的光学设备和实验平台,致力于设计和开发新型光学器件和系统,如光学通信系统、光学图像处理算法等。 实验室的研究成果被广泛应用于通信、图像处理、光学仪器等领域。例如,在光学通信领域,实验室提供了高效的光学传输方案和光纤通信系统的优化算法,提高了通信速率和传输质量。而在图像处理方面,实验室的成果包括基于光学原理的图像去模糊算法、图像自动识别和图像增强等,为图像处理和计算机视觉的发展做出了贡献。 实验室还注重培养人才,通过提供实践机会和培训课程,培养学生在信息光学数学方向的研究能力和创新思维。实验室鼓励学生开展自主课题研究,参与论文发表和国内外学术会议,以提升学术影响力。 总之,信息光学数学实验室(PDF)是一个致力于信息光学数学研究的实验室,旨在推动信息光学数学领域的发展,并培养相关领域的人才。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值