1315 合法整数集
一个整数集合S是合法的,指S的任意子集subS有Fun(SubS)!=X,其中X是一个固定整数,Fun(A)的定义如下:
A为一个整数集合,设A中有n个元素,分别为a0,a1,a2,...,an-1,那么定义:Fun(A)=a0 or a1 or ... or an-1;Fun({}) = 0,即空集的函数值为0.其中,or为或操作。
现在给你一个集合Y与整数X的值,问在集合Y至少删除多少个元素能使集合Y合法?
例如:Y = {1,2,4},X=7;显然现在的Y不合法,因为 1 or 2 or 4 = 7,但是删除掉任何一个元素后Y将合法。所以,答案是1.
Input
第一行两个整数N,X,其中N为Y集合元素个数,X如题所述,且1<=N<=50,1<=X<=1,000,000,000.
之后N行,每行一个整数yi,即集合Y中的第i个元素,且1<=yi<=1,000,000,000.
Output
一个整数,表示最少删除多少个元素。
Input示例
5 7
1
2
4
7
8
Output示例
2
思路:
注意到or 操作的性质,第一,1会累积下来;其次,如果a>b 那么不管对a 怎么进行or 操作都不会得到b。只要保证对于x 的某个位置上的1 无法在子序列中得到满足,那就就无法构成x。所以只要求出在小于x的所有元素中 对应的1的个数最少的量。
#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;
#define endl "\n"
const int maxn = 55;
int bx[maxn];//X
int t[maxn];
int by[maxn];
int main (){
std::ios::sync_with_stdio(false);
memset(bx,0,sizeof(bx));
memset(t,0,sizeof(t));
int n;
long long X;
cin>>n>>X;
long long cnt=X;
int i=0;
while(cnt){
bx[i++]=cnt%2;
cnt/=2;
}
long long y;
for(int j=0;j<n;j++){
cin>>y;
if((y|X)!=X){
continue;
}
cnt=y;
i=0;
while(cnt){
by[i]=cnt%2;
if( by[i]==bx[i] && bx[i]==1){
t[i]++;
}
i++;
cnt/=2;
}
}
int ans=maxn;
for(int i=0;i<maxn;i++){
if(bx[i]>0 && ans>t[i]){
ans=t[i];
}
}
if(ans==maxn){
cout<<0<<endl;
}else{
cout<<ans<<endl;
}
return 0;
}