这道题目关键是建图,图建完了算法都一样
这道题将每一个客户看做一个节点,并增加节点0,和节点n+1,节点0相当于网络的起点,节点n+1相当于网络的终点。
这道题将每一个客户看做一个节点,并增加节点0,和节点n+1,节点0相当于网络的起点,节点n+1相当于网络的终点。
每个客户都有打开每一个猪圈的钥匙,如果该客户是第一个打开该猪圈的,那么则将他和0相连,权值为猪圈里猪的数量,如果不是第一个打开的,则将他和最后一次打开那个猪圈的客户相连。最后,将客户和n+1相连,权值为他要购买的猪的数量,
PIGS
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 12293 | Accepted: 5437 |
Description
Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
Input
The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
Output
The first and only line of the output should contain the number of sold pigs.
Sample Input
3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6
Sample Output
7
#include<iostream> #include<cstdio> #include<algorithm> using namespace std; #define mm(a) memset((a),0,sizeof((a))) #define INF 0xFFFFFF #define MAXN 110 #define MAXM 1010 int n,m,c[MAXN][MAXN],dis[MAXN],gap[MAXN]; int pig[MAXM]; int st,ed; int sap(int u,int flow) { if(u==ed) return flow; int ans=0,i,t; for(i=0;i<=n+1;++i) if(c[u][i]&&dis[u]==dis[i]+1) { t=sap(i,min(flow-ans,c[u][i])); c[u][i]-=t,c[i][u]+=t,ans+=t; if(ans==flow) return ans; } if(dis[st]>=n+2) return ans; if(!--gap[dis[u]]) //gap优化 dis[st]=n+2; ++gap[++dis[u]]; return ans; } void solve() { int ans=0; int temp; st=0,ed=n+1; mm(c),mm(gap),mm(dis); for(int i=1;i<=m;i++) scanf("%d",&pig[i]); for(int i=1;i<=n;i++) { int nn; scanf("%d",&nn); for(int j=1;j<=nn;j++) { scanf("%d",&temp); if(pig[temp]>=0) { c[0][i]+=pig[temp]; pig[temp]=-i; } else { c[-pig[temp]][i]=INF; pig[temp]=-i; } } scanf("%d",&temp); c[i][n+1]=temp; } for(gap[0]=n+2;dis[st]<n+2;) ans+=sap(st,INF); printf("%d\n",ans); } int main() { while(cin>>m>>n) solve(); return 0; }