HDU 2421 质因子分解

果然智商捉急啊,这题看了好久,想了好久才想明白!!

 

任何一个大于1的数都能分解为一些质数的乘积  n=p1^e1*p2^e2*p3^e3...*pn^en

N的因子个数为(e1+1)*(e2+1)*...*(en+1)

只题求A^B 的因子的因子个数的3次方的和(好别扭!)

如2^3=8 因子为 1,2 ,4, 8 它们分别的因子个数为1  2 3 4  所以结果为1^3+2^3+3^3+4^3=1+8+27+64=100

我们先对A分解质因数   A=(p1^e1*p2^e2*p3^e3...*pn^en)^b=p1^(b*e1)*p2^(b*e2).....*pn^(b*en)

因此A的因子 可能有  p1^0  p1^1....p2^(b*e1)      分别的因子个数为 1 (1+1) (2+1)。。。(b*e1+1)

有因为  1^3+2^3+...+n^3=((n*(n+1)/2)^2   所以为((b*e1+1)*(b*e1+2)/2)^2

A的因子是A的所以质因子的幂的排列组合  因此用乘法

 

如果A为一个超出素数表的数 不能被分解 那么结果应为((b+1)*(b+2)/2)^2

 

   

#include<stdio.h>
#include<string.h>
#include<math.h>
#define mod 10007
bool isprime[1000];
__int64 res[1000];
int prime[1000];
int main()
{
    int n;
    int i,j;
    memset(isprime,true,sizeof(isprime));
    for(i=2;i<500;i++)
    {
       for(j=2;i*j<1000;j++)
         isprime[i*j]=false;
    }
    int k=0;
    for(i=2;i<1000;i++)
    {
        if(isprime[i])
            prime[k++]=i;
    }  
    int cnt=1;    
    int a,b;  
    while(scanf("%d%d",&a,&b)==2)
    {
        printf("Case %d: ",cnt++); 
        if(a==1)
        {
            printf("1\n");
            continue;
        }
        b%=mod; 
        int total=0;
        memset(res,0,sizeof(res));
        for(i=0;a!=1&&i<k;i++)
        {
           if(a%prime[i]==0)
           {
                while(a%prime[i]==0)
                {
                   res[total]++;
                   a/=prime[i];
                }
                total++;
           }
        }
        if(a!=1)   //当前素数都除不尽,一定为一个大素数 
        res[total++]=1; 
        __int64 ans=1;
        __int64 s;
        for(i=0;i<total;i++)
        {
             s=((b*res[i]+1)*(b*res[i]+2)/2)%mod;
             s=(s*s)%mod;
             ans=(ans*s)%mod;
        }
        printf("%I64d\n",ans);
    
    }
    return 0;
}
        


 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值