coco数据集mAP评估

0 coco数据集划分说明

在这里插入图片描述

1 用yolo自带的评估

from ultralytics import YOLO

model = YOLO("../spatial-perception/checkpoints/yolo11n.pt")

metrics = model.val(data="./coco.yaml", save_json=True)  ## save_json为True,可以把预测结果存成json文件, 便于评估或在线提交

在这里插入图片描述

2 用pycocotools 工具进行评估

代码:
https://github.com/leo038/coco_tools/blob/main/coco_eval.py

用pycocotools评估时, 需要把结果保存为coco格式的json文件。

结果: 在这里插入图片描述

2个评估结果略有差别, 但差别不大。

整体对比如下:
在这里插入图片描述

特别需要注意, yolo直接输出的类别id是从1到80。 而coco的数据集中标注的id是1到91, 这2个并不匹配, 如果不做一定的处理, 让它们匹配的话, 计算结果是错误的。 如下图所示 ,mAP值非常小, 接近于0 。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值