Glove公式推导

本文详细介绍了Glove词向量模型的公式推导过程,从定义符号开始,通过词向量和共现矩阵的一致性,逐步构建成本函数,并考虑单词之间的关系,简化模型,最终得出损失函数。同时,还提到了矩阵分解方法的缺点及权重项的引入,以适应不同词对的重要性。
摘要由CSDN通过智能技术生成

定义符号:
X i = ∑ j = 1 N X i , j P i , k = X i , k X i r a t i o i , j , k = P i , k P j , k X_i = \sum_{j=1}^N{X_{i,j}}\\ P_{i,k} = \frac{X_{i,k}}{X_i}\\ ratio_{i,j,k} = \frac{P_{i,k}}{P_{j,k}} Xi=j=1NXi,jPi,k=XiXi,kratioi,j,k=Pj,kPi,k

ratioi,j,k的值 单词j,k相关 单词j,k不相关
单词i,k相关 趋近1 很大
单词i,k不相关 很小 趋近1

推导:
假设已经得到词向量,则词向量和共现矩阵应该具有很好的一致性。假设词向量$v_i ,v_j, v_k$计算 r a t i o i , j , k ratio_{i,j,k} ratioi,j,k的函数为 g ( w i , w j , w k ) g(w_i ,w_j ,w_k) g(wi,wj,wk),则:

P i , k P j , k = r a t i o i , j , k = g ( w i , w j , w k ) \frac{P_{i,k}}{P_{j,k}} = ratio_{i,j,k} = g(w_{i},w_{j},w_{k}) Pj,kPi,k=ratioi,j,k=g(wi

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值