poj 2184

一道01背包的变形题。
从题目描述中我们可以看出,对于一头牛,我们可以选或者不选,所以这是一个01背包的雏形。然后每头牛有两个值,一个是s,一个是f,我们可以将其中一个当做cost,一个当做weight,那么对应的一个就是dp[i],一个是i,这样全部求出来以后,我们在全部dp[i]>0的情况中寻找dp[i]+i最大的那个即可。
这道题目还有负数的情况,那么我们可以将背包的容量进行一个偏移,题目中所给数据范围正的最大为100*1000,负的最大为100*-1000,所以我们将10*-1000偏移成0,那么最大就是为2*10*1000,然后对每一个weight[i]来说,如果weight[i]是正的,那么我们逆序循环,这样每头牛最多选中一次,而如果是负数的话,那么我们要顺序循环,这样才能够使得每头牛被选中的次数<=1, 初始化的时候,我们只初始化100*1000为0,其他全为-INF,因为只有这个是符合条件的。
推荐一个博客

#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<time.h>
#include<queue>
#include<stack>
#include<iterator>
#include<math.h>
#include<stdlib.h>
#include<limits.h>
#include<map>
#include<set>
#include<bitset>
//#define ONLINE_JUDGE
#define eps 1e-5
#define INF 0x7fffffff
#define FOR(i,a) for((i)=0;i<(a);(i)++)
#define MEM(a) (memset((a),0,sizeof(a)))
#define sfs(a) scanf("%s",a)
#define sf(a) scanf("%d",&a)
#define sfI(a) scanf("%I64d",&a)
#define pf(a) printf("%d\n",a)
#define pfI(a) printf("%I64d\n",a)
#define pfs(a) printf("%s\n",a)
#define sfd(a,b) scanf("%d%d",&a,&b)
#define sft(a,b,num) scanf("%d%d%d",&a,&b,&num)
#define for1(i,a,b) for(int i=(a);i<b;i++)
#define for2(i,a,b) for(int i=(a);i<=b;i++)
#define for3(i,a,b)for(int i=(b);i>=a;i--)
#define MEM1(a) memset(a,0,sizeof(a))
#define MEM2(a) memset(a,-1,sizeof(a))
#define ll __int64
const double PI=acos(-1.0);
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
using namespace std;
//#pragma comment(linker,"/STACK:1024000000,1024000000")
int n,m,q;
#define N 200005
#define M 100000
#define Mod 1000000000
#define p(x,y) make_pair(x,y)
const int MAX_len=550;
int val[110],wt[110];
int dp[N];
int main(){
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
//  freopen("out.txt", "w", stdout);
#endif
    while(sf(n)!=EOF){
        for(int i=0;i<n;i++)
            scanf("%d%d",&val[i],&wt[i]);
        for(int i=0;i<N;i++) dp[i] = -INF;
        dp[M] = 0;
        for(int i=0;i<n;i++){
            if(wt[i]>0){
                for(int j=N;j>=wt[i];j--){
                    if(dp[j-wt[i]]>-INF)
                    dp[j] = Max(dp[j],dp[j-wt[i]]+val[i]);
                }
            }else{
                for(int j=wt[i];j<N+wt[i];j++){
                    if(dp[j-wt[i]]>-INF)
                        dp[j] = Max(dp[j],dp[j-wt[i]]+val[i]);
                }
            }
        }
        int ans=0;
        for(int i=M;i<=2*M;i++){
            if(dp[i]>=0){
                ans = Max(ans,dp[i]+i-M);
            }
        }
        pf(ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值