给你一个n长的序列,然后有k个询问,每个询问一个t,问你在n长的序列中和最接近t的为多少,并且输出此区间的左右边界。
尺取法第一题。
尺取法,就是以O(n)的效率来解决一个序列的端点移动问题。
在这里,我们要求最近接t的和,那么首先,因为数据较大,所以我们先预处理出所有的前缀和,而且得按值排序,这样子才能准确的移动“尺子”的端点。而且排序完以后也不会对结果造成影响,因为这道题目是取绝对值,所以端点的大小没有关系。然后就按照尺取法的步骤,搞两个指针,在前缀和里面找到那个距离t最近的那端区间和以及左右边界。
#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<time.h>
#include<queue>
#include<stack>
#include<iterator>
#include<math.h>
#include<stdlib.h>
#include<limits.h>
#include<map>
#include<set>
#include<bitset>
//#define ONLINE_JUDGE
#define eps 1e-8
#define INF 0x7fffffff
#define FOR(i,a) for((i)=0;i<(a);(i)++)
#define MEM(a) (memset((a),0,sizeof(a)))
#define sfs(a) scanf("%s",a)
#define sf(a) scanf("%d",&a)
#define sfI(a) scanf("%I64d",&a)
#define pf(a) printf("%d\n",a)
#define pfI(a) printf("%I64d\n",a)
#define pfs(a) printf("%s\n",a)
#define sfd(a,b) scanf("%d%d",&a,&b)
#define sft(a,b,num) scanf("%d%d%d",&a,&b,&num)
#define for1(i,a,b) for(int i=(a);i<b;i++)
#define for2(i,a,b) for(int i=(a);i<=b;i++)
#define for3(i,a,b)for(int i=(b);i>=a;i--)
#define MEM1(a) memset(a,0,sizeof(a))
#define MEM2(a) memset(a,-1,sizeof(a))
#define ll long long
const double PI=acos(-1.0);
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
using namespace std;
//#pragma comment(linker,"/STACK:1024000000,1024000000")
int n,m;
#define N 210
#define M 100010
#define Mod 1000000000
#define p(x,y) make_pair(x,y)
const int MAX_len=550;
pair<int,int> pre[100010];
void deal(int x){
int st=0,ed=1;
int mmin = INF;
int l,r,ans;
while(st<=n && ed<=n){
int dif = pre[ed].first-pre[st].first; //计算从某一段区间内的和
if(abs(dif-x)<mmin){ //如果差的绝对值是最小的
mmin = abs(dif-x); //记录最小的绝对值
ans = dif; //记录此时的区间和
l = pre[ed].second; //记录左右端点(此时的左右端点大小并不明确,因为我们按值排过序)
r = pre[st].second;
}
if(dif<x) ed++; //如果差绝对值比要求的小,那么就增加前缀和端点的右边界,因为我们排过序,所以这样子会使得dif增大
else if(dif>x) st++; //同理,这样会使得dif减小
else break;
if(st == ed) ed++; //一定要注意,尺取法的两端点不能相同,因为相同的话差值为0,但此时没有意义
}
if(l>r) swap(l,r); //明确大小关系
printf("%d %d %d\n",ans,l+1,r); //左边界是+1的,因为这里的区间和实际上是在[l+1,r]之间
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
#endif
int k;
while(sfd(n,k)!=EOF && n+k){
pre[0] = p(0,0);
int sum=0;
int x;
for(int i=1;i<=n;i++){
sf(x);
sum += x;
pre[i] = p(sum,i); //存储前缀和
}
sort(pre,pre+n+1); //排序
for(int i=0;i<k;i++){
sf(x);
deal(x);
}
}
return 0;
}