有哪些值得推荐的数据可视化工具?

作者:文兄
链接:https://www.zhihu.com/question/19929609/answer/133825589
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

谢邀。本答案提要:1.plotly 2.R ggplot23.无需编程语言的工具(7个)4.基于JavaScript实现的工具(8个)5.基于其他语言的工具(5个)6.地图数据可视化工具(7个)7.金融(股票)数据可视化工具(2个)8.时间轴数据可视化工具(2个)9.函数与公式数据可视化工具(2个)10.其他(3个)共计37个工具,PS:先赞后收藏。。-----------1.plotly:-----------更多gallery链接:plotly-----------------2.R ggplot2:-------------------------------------------------3.无需编程语言的工具:--------------------------------01. TableauCreate and share data in real time with Tableau02. RawRaw is an open web app with a simple interface03. InfogramInfogram enables you to create both charts and infographics online04. ChartBlocksChartBlocks is another online chart builder05. Visualize FreeMake visualizations for free!06. Visual.lyhttp://Visual.ly makes data visualisation as simple as can be07. iChartsiCharts can have interactive elements, and you can pull in data from Google Docs-----------------------------------------4.基于JavaScript实现的工具:-----------------------------------------01. Chart.jsChart.js is perfectly suited to smaller projects02. D3.jsYou can render some amazing diagrams with D303. FusionChartsA comprehensive JavaScript/HTML5 charting solution for your data visualization needs04. JavaScript InfoVis ToolkitJavaScript InfoVis Toolkit includes a handy modular structure05. jQuery VisualizejQuery Visualize Plugin is an open source charting plugin06. ZingChartZingChart lets you create HTML5 Canvas charts and more07. FlotCreate animated visualisations with this jQuery plugin08. GephiGephi in action. Coloured regions represent clusters of data that the system is guessing are similar--------------------------------------5. 基于其他语言实现的工具:--------------------------------------#PHP01. jpGraph01234567 (二维码自动识别)jpGraph is a PHP-based data visualization tool#JAVA02. ProcessingProcessing provides a cross-platform environment for creating images, animations, and interactions#Python03. NodeBoxNodeBox is a quick, easy way for Python-savvy developers to create 2D visualisations#R04. RA powerful free software environment for statistical computing and graphics, R is the most complex of the tools listed here#Weka05. WekaA collection of machine-learning algorithms for data-mining tasks, Weka is a powerful way to explore data-----------------------------------6. 地图数据可视化的工具:-----------------------------------01. CartoDBCartoDB provides an unparalleled way to combine maps and tabular data to create visualisations02. InstantAtlasInstantAtlas enables you to create highly engaging visualisations around map data03. PolymapsAimed more at specialist data visualisers, the Polymaps library creates image and vector-tiled maps using SVG04. OpenLayersIt isn’t easy to master, but OpenLayers is arguably the most complete, robust mapping solution discussed here05. KartographKartograph’s projections breathe new life into our standard slippy maps06. ExhibitExhibit makes data visualization a doddle07. Modest MapsIntegrate and develop interactive maps within your site with this cool tool08. LeafletUse OpenStreetMap data and integrate data visualisation in an HTML5/CSS3 wrapper-----------------------------------7. 金融数据可视化的工具:-----------------------------------01. DygraphsHelp visitors explore dense data sets with JavaScript library Dygraphs02. HighchartsHighcharts has a huge range of options available-----------------------------------8. 时间轴数据可视化工具:-----------------------------------01. TimelineTimeline creates beautiful interactive visualizations02. DipityDipity has free and premium versions to suit your needs-------------------------------------9. 函数公式数据可视化工具-------------------------------------01. WolframAlphaWolfram Alpha is excellent at creating charts02. TangleTangle creates complex interactive graphics. Pulling on any one of the knobs affects data throughout all of the linked charts. This creates a real-time feedback loop, enabling you to understand complex equations in a more intuitive way------------8. 其他:------------01. Better World FluxMaking the ugly beautiful - that’s Better World Flux02. Google ChartsGoogle Charts has an excellent selection of tools available03. CrossfilterCrossfilter in action: by restricting the input range on any one chart, data is affected everywhere.编辑于 2016-12-01​赞同 7159​​72 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续指北针公众号【芒种学院】,有趣高效率的技巧&工具都在这里了。9,263 人赞同了该回答全文30000字,阅读需30分钟,干货预警,收藏点赞退出一气呵成!强烈推荐安利Excel这个工具,看到回答 区提供了不少数据可视化的工具,例如R、Python、第三方在线工具等等,但是绝大部分对于初学者非常不友好,需要花大量时间去学习,研究,更新多一个小视频(2020.01.03二次更新多仪表盘的制作技巧):Excel能做出怎样的可视化图表?为什么推荐Excel,因为以下几点:可制定、学习起来简单、兼容性极强、普遍性等等。课程传送门(学完点个5星即可)Excel实战篇,让你的图表动起来 - 网易云课堂 未经允许,禁止转载,更多Excel教程、模板,可以前往公众号:芒种学院在学习可视化数据分析的过程中,总结了非常多的经验,借着这个话题分享给大家,因为篇幅问题,整理好的教程都放在链接中了,先来看下整体的技能树:技能树以下是部分基础案例:基础图表Excel商务仪表盘Excel商务仪表盘接着就来聊聊我学习Excel数据可视化的一个过程:01 优秀图表所具备的特征工具千千万万,优秀的图表具备的特征都非常明显,合理了解这些特征,哪怕使用任何可视化工具,都可以制作出非常棒的可视化效果,主要知识点:从哪里学习图表风格、一份图表需要具备哪些元素、如何在Excel中设定自定义风格、如何安装商务字体、如何设置新建模板为主题等等。1.1 从哪里学习图表风格在可视化图表非常流行的今天,形成了不少非常具有特色的风格,例如商业杂志,经济学人,扁平化风格等等,那么有哪些网站可以借鉴我们利用到Excel中呢?包括第三方在线工具、商业杂志、设计师网站等等这些风格都可以借鉴,学习风格是为了帮我们更快更好制作出好看的图表。学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 1.2 优秀的可视化图表需要具备哪些元素在了解完商务Excel图表风格之后,还需要了解这些图表的共性,每一份图表之中有什么不可缺少的元素,例如:标题、logo、图例、底色/网格线、坐标轴、脚注、注释等等。学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 1.2 设置Excel自定义配色方案在Excel中将配色方案设置为4种,分别是:序列配色、背景配色、文字配色、logo/边框配色,为这4种不同的场景设置配色。其中配色卡长这个样子,通过设定不同的标记和填充值,在使用的时候,直接输入RGB的值就可以了:为了方便大家观察,特意绘制了一份填充对照图:使用不同的配色主题,可以一键更换成其他的风格,例如这种:学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 1.4 安装免费可商用的字体包影响图表美观大方的因素还有字体,Excel中制作的图表是调用本地的字体,所以只需要将字体安装在本地电脑即可,安装的办法也非常简单,下载字体包,直接双击即可,这里使用“思源黑体”系列。在安装完字体之后,在Excel的【页面布局】选项卡下设置【自定义字体】风格,将标题和内容均改为思源黑体系列,并且设置一个简约的风格。学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 1.5 设置自定义模板为启动新建文件为了方便Excel在每次新建文件的时候可以使用我们自定义的主题,可以将前面设置的主题保存起来,然后新建一份空白文档,选中自定义的主题,然后保存为【.xltx】模板文件,并且放置于启动目录下,这样新建的文档默认就是这个风格了。学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 02 基础必学的Excel可视化图表技巧制作一份优秀的可视化图表,离不开牢固的基础,主要知识点:界面与图表功能、内置图表功能、单元格作图、文本框作图、Excel锚点、链接图片、图表模板等。2.1 Excel基础图表功能与界面认识Excel关于图表的知识点不多,只需要了解:设计选项卡、格式选项卡、数据系列格式、坐标轴格式、网格线等等即可,知识点整理如下:配合前面所学的配色主题,能制作出这样的图表:学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 2.2 利用内置图表完成商务作图内置图表包括了:柱状图、条形图、饼图、雷达图、折线图、堆积图、散点图等等大概十多种图表,99%的可视化图表都可以使用内置的图表来完成。绘制图表的第一要素就是,分析数据适合使用什么图表,如果数据结构不够优良,那么可以尝试修改数据结构,例如下图的数据为占比分析,那么就可以使用“饼图/圆环图”。学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 2.3 利用单元格完成作图地方在Excel中,一个绘图区只能绘制一组图表,如果想绘制多组,制作成信息卡片的样子,那么就可以尝试使用单元格来进行作图。例如下方的数据:如果想要展示营收的同时,也想展示占比,使用组合图的效果又不好,那么就可以来尝试利用单元格绘制“符合图表”,例如这样子的:看着是一个图表,实际上是单元格+图表的构成,并且数据还会动态实时刷新,这也是Excel制定化程度非常高的一个原因(取消网格线,通过链接图片的方式让单元格组成一个整体)。单元格作图学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 2.4 利用文本框作图在Excel中文本框也可以利用来作图(WPS不可以),文本框通过编辑栏,可以实现对单元格的引用,这样可以非常方便地将文本框嵌入到图表中,然后动态引用数据。在绘制图表的时候除了要展示图表的数据之外,我们有时候还需要一些辅助的指标数据,如下:原始数据+指标数据作图如果要将辅助信息也写入到图表中,我们就需要在图表中直接插入文本框,然后动态引用单元格,就可以得到这样的文本框作图,文本框引用的数据也支持实时刷新:对于这些图表,使用其他软件来实现的话,难度非常大,而使用Excel,轻松可以搞定。学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 2.5 Excel锚点和图片链接在Excel中,难免会碰上单元格作图,两个图表的大小要完全对齐,手工操作就非常麻烦了。先来了解下使用锚点,按住键盘的Ctrl键盘,在拖动图表的时候,就会以Excel 的单元格边界为区域了,这样可以快速将图表与单元格对齐,快速制作出整洁的图表:同样,单元格作图直接选中数据,然后粘贴为“链接图片”,就可以组合成一个整体,不会拆分出来。学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 2.6 将制作好的图表保存为模板其他软件能一键出好看的图表,在Excel中为什么需要调整这么久?其实Excel也是可以将精心制作好的图表保存为模板的, 下次使用的时候,一键生成就行,保存的方式也非常简单。右击-模板就ok。制作一份高级可视化图表需要多久?仅需要10秒,10秒钟能做什么?10秒钟是你打开Excel文件的时间,思考都还没来得及,职场高手就已经将图表制作完毕了:10秒生成商务图表学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 03 十大必学的基础图表Excel中的基础图表有非常多,但是必学的可以分为以下这10种:柱状图、条形图、散点图、气泡图、雷达图、饼图、折线图、面积图、直方图、组合图等。在不同的数据结构下选择不同的图表,会有不同的效果,制作可视化的最重要的一步就是选对图表。3.1 类别比较神器:柱状图使用场景/技巧柱状图是使用频率最高的图表,甚至没有之一,使用场景又能被分成以下几个:柱状图使用场景学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 3.2 类别比较神器:条形图的使用场景/技巧与柱状图对应的就是条形图,如果优先观察数据的分布、类别名称比较长等,优先使用条形图,展示效果会比柱状图要好不少:条形图学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 3.3 双变量分析:散点图使用场景/技巧散点图的适合场景(XY双变量分析):XY两个变量之间的关联与联系,例如:身高/体重、广告投放/收入等等,如果需要分析变量之间的关系,则使用散点图;优缺点也很明显:可以用于展示数据的分布和聚合的情况;适合展示比较大的数据;看上去比较乱,数据细节不明显,只能看到相关、分布、聚合等信息;不同的数据绘制效果如下:散点图最常见的用于分析数据之间的关联,有以下几种联系:数据关联学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 3.4 三变量分析:气泡图使用场景/技巧在散点图的基础上,如果数据的维度增加多一维,那么就可以使用气泡图,气泡图的性质与散点图接近,但是不适合展示大量数据,一般也可以用来观察少量数据的分布情况。散点图与散点图一样,也可以绘制多组数据系列:多数据系列气泡图学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 3.5 多属性分析:雷达图使用场景与技巧如果数据的维度暴增,变成了4~10维的话,那么要对比他们的差异,使用雷达图是最佳的,但是雷达图有一个限制,就是数据量不能很大,并且尽量让数据归一化进行对比(同数据量对比),否则会丧失意义。雷达图除了以上的注意事项之外,雷达图由于是全部连接在一起的,这就要求数据之间没有什么关联,并且可排序,如下就是错误示范:错误示范以上就是错误的示范,数据是不可排序的,并且有关联,10月和1月之间是不应该连接的。学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 3.6 占比分析神器:饼图使用场景/技巧如果是要统计数据的占比情况,那么就选择饼图,或者是圆环图,这个系列的图表能很清晰地展示数据的占比情况,知识点如下:饼图/圆环图学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 3.7 时间趋势分析:折线图使用场景如果数据量比较大,并且数据是沿着某个方向进行有规律变化的,那么就可以使用折线图,折线图无论是展示大量数据,还是少量数据,都非常适合。知识点:少量数据反应数据细节&趋势:少量数据数据量大的时候,可以看出整体的趋势,例如下图余额宝七日年化收益率的变化:余额宝七日年化收益学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 ----------------------------2020.01.03更新部分----------------------------04. 仪表盘的制作技巧在实际工作中相信很多同学都看过可视化图表、大屏报表、仪表盘,可能你不知道这些词,但是肯定经常被这种高大上的图表吸引到了。学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂 其实这种通常被称为「仪表盘」,仪表盘将不同的关键信息/指标等统一组织在一个屏幕上显示,那么究竟难不难制作呢?不难!3招就可以轻松搞定。01. 确定指标拿到一份数据并不是立马就动手作图,一定要确定好「需求」!那么数据汇报的需求是什么呢?其实不在乎就是挖掘出数据中隐藏的价值和信息。这里我们以「2019年圆通全球集运平台数据」为例,来挖掘数据中需要展示的信息,根据业务的需求,提取出来一下信息:不同月份客户下单的情况分析;承运商车辆认证/适配/新增/使用情况;配送运单的送达情况/罚款情况/区间情况;用户注册相关分析/活跃度/注册占比等;…在数据量很庞大的时候,往往不知道从哪里着手开始分析,也可以使用这个思路,将大需求拆分成很多个小需求。同时我们也可以将表格拆分成很多个单独的小表,如下根据需求拆分出来的数据表格:拆分小需求这样,每一个需求的指标就都已经齐全了,接下来就可以开始着手制作仪表盘了~02. 确认布局/配色/风格将需求和指标一一列出来之后,接下来就是合理布局这些数据/图表,形成「数据看板」,怎么快速布局呢?其实是有技巧的。新建一份空白Sheet,并且将行宽列高调整为一致,也就是让单元格变成一个一个的小正方格。缩放单元格接着我们可以将这些小正方格链接在一起,并且为每一块区域标记命名,备注每一个区域填充的内容,就像下方这样:合理布局内容版块如果这里不会布局,那么可以去哪里快速寻找仪表盘来进行模仿呢?这里给大家推荐 4 个网站:花瓣网,以配色+布局为主体,搜索可以直接使用;站酷网,以配色+布局为主体,跟花瓣网一样;CollectUI,以UI设计为主,模仿网站后台;优设网,以设计思路+教程为主,提升细节体验;…在这些网站搜索关键词:大屏、Dashboard、看板、数据报告,就可以找到非常多值得参考的大屏数据汇报,吸取他们的配色方案即可。例如本例子所使用的颜色标准和布局风格都来自这几个网站上设计的参考:配色方案参考字体方案参考版式参考到这一步就将「仪表盘」的整体基础架构搭建起来了,接着就可以往这个框架里填充数据/图表了。03. 填充数据/图表/美化在第一步中,我们已经将指标全部确认完毕了,在这一步只需要分别将每个图表绘制出来,并且填充到对应的区域即可,如下:填充图表那么底下「发光的边框」是如何制作的呢?其实很简单,这是利用Excel形状中的「内部阴影」功能实现的。给形状填充一个背景色,并且设置内部阴影的「透明度」为50%,「模糊」为26磅,「颜色」为蓝色,就可以得到这种效果:制作发光边框素材然后将制作好的「发光边框」放置到图表的下方即可。图表的美化则有几个步骤,设置填充/边框/字体色/网格线,调整图表区域的大小和位置,就可以了,非常轻松,录制了一个GIF给大家:美化图表至此,我们就巧妙利用了Excel中的单元格栅栏布局、内置基础图表、基础形状完成了一份科技感非常强的「仪表盘」。当然你可以在图表中插入一些比较科技风的图片元素,例如光效、科幻背景等等。本案例中使用的光效如下,使用高光修饰图表的标题:高光修饰标题科幻背景使用如下,使用线条联动背景修饰整块背景:科技背景修饰仪表盘这些免扣素材可以上哪里去寻找呢?在之前的推文中,我们就分享过「51觅元素」这个免扣素材,上去搜索光效就可以找到啦:51觅元素整体完成之后,科技风和专业感都满满,比你单独提交数据汇报强太多了~Excel动态仪表盘学习传送门:Excel实战篇,让你的图表动起来 - 网易云课堂未完待续!暂时先更新到这里,2020.01.03二次更新(更新多了仪表盘的制作技巧)想要学习【Excel可视化图表】的也可以关注下我哦~Excel实战篇,让你的图表动起来 - 网易云课堂 未经允许,禁止转载,更多Excel教程、模板,可以前往公众号:芒种学院点赞收藏感谢退出一气呵成~持续更新哦!!编辑于 2020-01-03​赞同 9263​​166 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续匿名用户3,530 人赞同了该回答前阵子在Coursera上了infographic的课(https://www.coursera.org/learn/infographic-design/home/welcome),课上涉及了几个,觉得应该适用于对编程语言不熟悉也不大会用AI的小朋友Plotly很方便的一点是和R, python, Excel等常见的数据处理软件/语言之间都是有API接过去DatavisualInfogra.am下面这几个应该比较符合大家对infographic的普遍预期,相比传统的数据可视化要有趣很多PiktoChartEasel.ly著名的tableau的public versionTableau PublicVismeVisme有个Blog非常好,很多人特别在意infographic是因为觉得表现形式看起来特别高级,其实内在的思路非常重要,要养成如何正确看待数据、发现数据之间的内在联系的好习惯Visual Learning Center by Visme, Infographics & Presentation ResourcesCanva偏图形设计,其实适合用来做Presentation多一点,也可以用于infographic后期的美化*免费账号的模版应该就够用了,如果日常工作有特别强的需求的话,再考虑付费版本编辑于 2016-07-27​赞同 3530​​42 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续PlayStation广告​不感兴趣知乎广告介绍PS Store 假期限时优惠来袭!多款热门游戏2折起!PS Store假期限时优惠来了,包括 Little Nightmares II、Ghost of Tsushima、Persona 5 The Royal、Grand Theft Auto V 等多款热门游戏低至2折起!查看详情李启方数据分析不是个事儿987 人赞同了该回答推荐一些简单的,日常工作能实际应用,或者个人学习数据分析、可视化有必要的工具。希望大家能真的用起来!推荐顺序:能中文版的,尽量不推荐没汉化的,密密麻麻我也头疼;能“傻瓜式”使用的,尽量不写代码,怕把你们吓跑;能免费的尽量不付费,破解咱不提倡哈。本答案提要:纯可视化图表生成(3个)可视化报表类(1个)商业智能分析(3个)数据地图类(2个)可视化大屏类(3个)数据挖掘编程语言(2个)PS:码字不易,先赞且珍惜。纯可视化图表生成/图表插件——适合开发,工程师Echarts(echarts.baidu.com)一个纯Javascript的数据可视化库,百度的产品,常应用于软件产品开发或网页的统计图表模块。可在Web端高度定制可视化图表,图表种类多,动态可视化效,各类图表各类形式都完全开源免费。能处理大数据量和3D绘图也不逊色,据说结合百度地图的使用很出色。Echart还是多用于一些开发场景的,但它也衍生了一个0代码的图表生成器 —“百度图说”,我体验了下,操作基本上就是选择图标,把数据复制过去,然后生成图表,保存为图或者代码嵌入。AntV (antv.alipay.com)AntV又是蚂蚁金服出品(阿里系)的一套数据可视化语法,貌似是国内第一个采用The grammar Of Graphics这套理论的可视化库。antv带有一系列的数据处理API,简单数据的数据归类,分析的能力,被很多大公司用作自己BI平台的底层工具。HighCharts (www.hcharts.cn)说道Echarts,都会拿来与Hicharts对比,两者有点像WPS和OFFICE的关系,倒不是说Echarts怎样,日常图表动效Echarts完全够了。Highcharts同样是可视化库,只不过是国外的,商用的话需要付费。其优势是文档详细, 实例也很很详细,文档中依赖哪些js脚本,css都十分详细,学习和开发都比较省时省力,相应的产品稳定性较强。可视化报表类——适合报表开发、BI工程师FineReport (www.finereport.com)一个报表软件,企业级的应用。用于系统的开发业务报表,数据分析报表。也可集成在OA,ERP,CRM等应用系统内,做数据报表模块,也可以开发成财务分析系统,就看你如何驾驭数据了。两大核心功能是填报和数据展示,但我觉得比较惊艳的一点是,它内置了大量的图表和可视化动效,可视化很丰富,完全没有印象中做报表那种古板的风格。多以它能做出格式各样的dashboard、甚至是可视化大屏,一点不虚。我之前工作有段时间拿finereport,感触最深的是开发报表很省力,10张门店报表以往做10张excel的,在他里面就是一个参数查询,然后批量导出,用一个模板。 所以有号称:工作用小屏,决策用大屏。办公用微软,经营用帆软。你用过Excel,却不知还有一款神器“FineReport”商业智能分析——适合BI工程师、数据分析师Tableau (www.tableau.com)几乎是数据分析师人人会提的工具,内置常用的分析图表,和一些数据分析模型,可以快速的探索式数据分析,制作数据分析报告。因为是商业智能,解决的问题更偏向商业分析,用 Tableau可以快速地做出动态交互图,并且图表和配色也非常拿得出手。FineBI (www.finebi.com)自助是BI工具,也是一款成熟的数据分析产品。内置丰富图表,不需要代码调用,可直接拖拽生成,包括一些数据挖掘模型也是。可用于业务数据的快速分析,制作dashboard,也可构建可视化大屏。tableau的平价替代,有别于Tableau的是,企业级数据分析的功能更多。从内置的ETL功能以及数据处理方式上看出,侧重业务数据的快速分析以及可视化展现。可与大数据平台,各类多维数据库结合,所以在企业级BI应用上广泛,个人使用免费。Power BI (powerbi.microsoft.com/zh-cn/)软继Excel之后推出的BI产品,可以和Excel无缝连接使用,创建个性化的数据看板。数据地图类很多工具都能实现数据地图,比如上面提到的Echarts、finereport、tableau等。这里强烈安利的Power Map 2016,可以快速体验一把爽。可以参见我的回答:李启方:怎么在 Excel 上做数据地图?还有比较快速的,地图慧内置的是百度地图,选择模板、上传数据、保存地图很简单的3步。可视化大屏类阿里DataV (data.aliyun.com/visual/datav)天猫双十一大屏就用DataV做的,是阿里云的拖拽式可视化工具,主要用于业务数据与地理信息融合的大数据可视化,像一些展览中心,企业管控中心用。不需要编程,通过简单的拖拽配置就能生成可视化大屏或者仪表盘。FineReport (www.finereport.com)上面提过,这个工具它也能做可视化报表,也能做大屏。因为后端通常连接业务系统数据,所以可以实时连接业务数据,做企业的一些经营数据展示。比如展览中心、BOSS驾驶舱,还有城市交通管控中心、交易大厅等。数字冰雹 (www.digihail.com)产品技术不了解,也只是有幸在一次活动上见过。专注于做数据图像、三维处理、数据分析等相关业务,通过图像可视化方式呈现数据分析,在智慧城市、工业监控用的比较多。就是商业的,不过官网上有很多大屏设计,可以提供灵感。数据挖掘编程语言——适合技术性数据分析师、数据科学家典型如R和PythonR-ggplot2Python公众号:数据分析不是个事儿常年分享数据分析干货,不定期分享好用的职场技能工具。回复“工具”获得33个好用工具下载地址编辑于 2018-12-10​赞同 987​​20 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续Instante​Google 软件工程师129 人赞同了该回答 搬运一篇以前翻译过的文章,从 Web 开发者的角度比较了 12 个不同的可视化工具。本文首发于我的博客:【翻译】为网页开发者推荐的 12 个绘图库原文作者:Rohit Boggarapu,文章链接:12 Best Charting Libraries for Web Developers 1. Google Charts文档和帮助信息丰富的 Google Charts 对于刚刚入门 JavaScript 绘图的人来说是极佳的选择。它的文档里到处都是带注释的代码和逐步的讲解,可以直接用来把 HTML5 / SVG 图标嵌入到你的网页中。如果你需要更进阶的自定义功能或是 Google 原始提供的 18 类以外的图表,下面会介绍一些有着更多类别和特性的选择。适合人群:追求灵活性和良好文档的严肃开发者。2. MetricsGraphicsMetricsGraphics 是一个在 D3.js 的基础上专为可视化时间序列数据而开发的绘图库。虽然它只支持线图、散点图、柱状图、直方图和数据表格,但它在这几类图表上的表现非常强。跟 Google Charts 一样(MetricsGraphics 是 Mozilla 的产品),丰富的文档和例子使得它很容易上手。比如这个非常有趣的关于 UFO 目击事件的交互式例子。同时它也是一个非常简易和轻量级的选择。适合人群:追求快速美观同时又不需要写一堆杂乱代码的开发者。3. FusionChartsFusionCharts 支持 vanilla JavaScript、jQuery、Angular 等一系列高人气的库和框架。它内置 90 多种图表和超过 1000 种地图,相比 Google Charts 和 MetricsGraphics 要完整得多。你可以在这里查看它所支持的全部图表类型。考虑到应用或是网站的拓展性,如果你选择了一个功能不完整的绘图库,这就有可能在将来发展成一个问题。而像 Microsoft、Google 和 IBM 这样的公司都在使用 FusionCharts,这说明它是一个能满足企业级拓展性需求的工具。适合人群:需要各种不同种类的易自定义图表的开发者。4. EpochEpoch 是一个基于 d3.js 开发的工具,它使得开发者可以方便地在他们的应用或是网站上部署实时图表。它的文档整洁,完全免费并且开源,这使得它对于不想花钱购买重量级解决方案的人来说是一个很好的选择。对普通数据和实时数据,Epoch 都支持 5 种图表类型。这个数量并不能与 FusionCharts 或是 Highcharts 这种特性完整的产品对抗,但它所专长的是以简单和友好的方式呈现实时数据。适合人群:需要简单灵活的实时数据呈现方案的开发者。5. ECharts百度的 ECharts 是一个很棒的工具,它支持在绘制完数据后再对其进行操作。这个被称为 Drag-Recalculate 的特性使得用户可以在图表之间拖动一部分的数据并得到实时的反馈。同时,ECharts 是专为绘制大量数据设计的。它可以瞬间在二维平面上绘制出 20 万个点,并用专为 ECharts 开发的轻量级 Canvas 库 ZRender 使数据动起来。你可以在这里对上图进行操作,来体验 ECharts 所提供的特性。适合人群:想尽量避免写代码并有实时数据操作需求的开发者。6. D3.js虽然并不是对用户最友好的工具,但 d3.js 在 JavaScript 绘图界的重要性是不可小觑的。许多其他的库都是基于它所开发,因为它提供了你所能想到的所有功能。它支持 HTML、SVG 和 CSS,并且有着海量的用户贡献内容 来弥补它缺乏自定义内容的劣势。由于 D3.js 的学习曲线比较陡峭,你或许会考虑看看 用 d3.js 进行数据可视化。这门课程能为你打下坚实的基础。适合人群:不怕写代码的硬核绘图专家。7. Sigma跟上面已经提到过的工具相比,Sigma 有着自己独特的定位,那就是图模型的绘制。它基于 Canvas 和 WebGL 开发并提供了公开的 API。所以你可以在 GitHub 上找到社区贡献的许多插件。举例来说,你可以用 Sigma.js 画出这样的图:Sigma 同时也是响应式的,并支持触屏。开发者很容易添加新的功能以及精细地控制边和顶点的规格。适合人群:需要专为绘制图模型设计的强大工具的开发者。8. Highcharts人气极高的 Highcharts 可以在不依赖插件的情况下绘制交互式的图表。它高灵活性的绘图 API 也被 Nokia、Twitter、Visa 和 Facebook 这样的公司所青睐。Highcharts 对于非商业使用是免费的,而商业许可的价格是一份 590 美元(附带技术支持)。这是一个用它绘制的例子:你可以通过这个教程来入门 Highcharts。适合人群:需要在技术支持的帮助下绘制各种复杂的图表的开发者。9. dc.jsdc.js 是一个开源的 JavaScript 绘图库。它非常适合用来创建交互式的仪表盘(Dashboard)。图表之间是有联系的,所以当你与其中一个部分进行交互时,其他部分都会做出实时的反馈。这是一个例子:除了一些在线课程以外,你可以通过各种例子来学习使用这个库。等你照着文档动手一遍以后就有能力创建自己的图表了。虽然 dc.js 并没有像 ECharts 或是 Google Charts 那样丰富的功能,但它在自己的卖点——易于呈现和探索巨量的维度数据集上做的非常好。适合人群:需要为关系型图表创建一个仪表盘的开发者。10. dygraphs由 Google 开发的 dygraphs 绝对是绘图工具中的明星。到现在 Google Correlate 还在使用它(当然,在设计上经过了一些调整)。它可以被用于绘图密集的项目,因为它能在不影响性能的情况下轻松地绘制几百万个数据点,这在很大程度上弥补了它那过于朴素的审美设计。从一开始作为 Google 的一个内部项目到最后公开发布,dygraphs 一直有着活跃的社区支持。同时它也在 GitHub 上开源。适合人群:需要有着活跃支持的专为绘制海量数据集设计的工具的开发者。11. VegaVega 是一个基于 d3.js 的用于创建、分享和保存可视化图标的库。它由许多部件组成,其中一些能够在不需要写代码的前提下达到与 d3 竞争的水平。Vega 能够把 JSON 数据转换成 SVG 或 HTML5 图表。虽然这没什么了不起的,但它把这一步做的很踏实。因为使用 Vega 不需要写任何代码(只要会编辑 JSON 文件即可),它是一个很好的 d3 替代品,能在降低使用复杂度的同时保留 d3 的特性。适合人群:需要 d3 强大的特性又不希望从头学起的开发者。12. NVD3最后介绍的工具也是基于 d3.js 的。作为绘图界的佼佼者,NVD3 是由一系列部件组成的,允许开发者创建可重用的图标。你可以在它的网站上找到许多 demo 和对应的代码。这也是上手 NVD3 的最佳方式。你可以看到,NVD3 的审美风格要比 d3.js 更为精致一点。它支持 11 种图表类型,包括区域图、线图、柱状图、气泡图、饼状图和散点图。同时也支持所有现代浏览器以及 IE 10 以后的版本。适合人群:熟悉 d3 并想要可重用图表的开发者。编辑于 2017-03-21​赞同 129​​2 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续Franci互联网3,297 人赞同了该回答个人感觉跟国外的数据可视化作品比起来,目前国内实践着的大部分数据可视化作品都是渣!!!想当年,作为一度痴迷数据新闻可视化的学生,羡慕information is beautiful的光鲜外衣,自学起来一些数据新闻网站,作为英语渣被虐得一把鼻涕一把泪!!!让我去厕所哭会儿。不过功夫不负有心人,还是让我找到了几个国外质量较高的数据可视化工具或资源。既然,楼主问到了,就在这儿曝光十个。嗯,首先,没有被此书虐过的童鞋Beautiful Visualization (豆瓣) 还是最好找一下虐,毕竟…基数就是基础,不来不去,它就在那儿帮助你更好地理解数据,这正是可视化的要义。工具,便是更好的帮你理解可视化。(好吧我承认这句话是我自创的)NO1. 我个人最喜欢的:http://Visual.ly Visually | Content Marketing for Brandshttp://Visual.ly 用社交网络功能来连接在世界各地的所有成员。设计师们通过提交自己的项目进入他们的网站画廊,从而能够对数据实现可视化。它理想的目标是提供一个接口,用于直接在浏览器中创建动态的信息图表。该工具目前未发布,虽然我听说过一些私人beta测试。你可以注册您的电子邮件地址以接收更新消息,并可能邀请测试。至于他们的网络功能,http://Visual.ly 提供了极少数的合作伙伴页面。这些类似于个人资料页面,您可以查看评论,喜欢,意见和信息图表意见,但这些都是有针对性的对大品牌 - 国家地理、易趣、Skype、CNN 等。NO2. Better World FluxBetter World Flux这是一款漂亮的可视化工具!Better World Flux 是一个可以互动信息、图形的网站。选择一个国家,根据指示操作,比如可以选择预期寿命或饮水作为指标。有一个小的视频演示如何操作,你可以在YouTube上观看(http://www.youtube.com/watch?v=xck1Alcyh2A)。NO3.We Feel FineWe Feel Fine / by Jonathan Harris and Sep KamvarWe Feel Fine 标榜为人类情感而探索,这是我见过最独特的可视化引擎之一。开始前要点击其主页上的大按钮,该应用程序将据此加载操作系统。沿上面一行,你会发现飞出选项对数据进行排序。其标准包括年龄,性别,气候位置,甚至日期。该项目提供了整个世界的喜怒哀乐情绪,在任何给定的点,数据超级详细!这是对人类来说,真正令人震惊的实验。当你点击画布的任何地方,飞球会分散。如果您将鼠标放在他们中的一个,它会提供更多的细节,点击打开,顶部有一个全新的选项。许多结果都来自Twitter。情绪和情感的数据数量级是令人难以置信。NO4. Rss VoyageRss Voyage - RSS feed reader with a difference另一个我个人最喜欢,且确实有助于形象化各地数据的网络数据的网站。如果您登录到Rss Voyage, 你可以导入自定义RSS供稿到您的帐户一整个数据图。在他们的网页,你可以点击“开始”与默认提供的应用程序。在这种情况下Rss Voyage将拉动几个流行的博客,如纽约时报,瘾科技,卫报,等等。如果您通过移动图形,点击一个特定的文章的观点时,他将固定在屏幕上。这包括标题,简短描述,元数据连同它的URL出版日期。如果在任何时候你想开始创建自己的RSS可视化,所有你需要做的就是创建一个帐户!注册是完全免费的,你可以在页面的底部创建通过注册表格您的帐户。作为另一奖励功能Rss Voyage可以让你轻松设置全屏模式浏览风格的RSS源。NO5.Revisitmoritz.stefaner.eu客观来讲,Revisit是一种重新定义我们如何看待微博的工具。有了这个工具,你可以与一个或多个关键字的数据创建连接。您可以将额外的标题添加到您的图形和分享的链接(甚至到微博) 。点击一个单独的分离线,关闭图形将显示更多细节。通常包括元数据,如时间发布和相关的关键字。搜索条件仅限于标准的Twitter符号,使用逗号分隔的关键字列表。如果有兴趣,我建议查看位于同一网站的创作数据可视化等项目。Truth & BeautyNO6.Tag GalaxyTag GalaxyTag Galaxy是一个非常独特的可视化工具。他们的主页干净且易于理解,因为标签Flickr上有单独的一个搜索表单。此外左下角设有为新用户一些流行的建议。只需输入一个词,然后按Enter,通过Flickr的照片就可在Tag Galaxy查询。他们的渲染引擎复制我们的太阳系的中心,太阳代表主要搜索项的外观,外部行星的轨道代表类似的标签。这是我见过的最酷的可视化演示渲染和Flash之一。注意,当您在每个星球上悬停它会为你提供一个小的预览数。这是发现在Flickr的该标签的询问的照片总数。点击太阳将打开相关照片缩略图的球体,而旋转的行星会增加他们的搜索字词的查询。当然,你可以找到更多有关照片通过点击弹出完整视图。NO7.Google Fusion TablesAbout Fusion Tables我们都知道的龙头企业是谷歌。他们的实验室的后面几年已经运行了一些很有趣的实验,Google Fusion Tables就是其中之一。你需要的是一个谷歌账户。此工具可以公开在网上共享数据,并建立自定义的可视化图形。这些可以从csv或Excel电子表格导入。尽管目前并不支持。登录后,会发现公共数据列表的表格与演示。这些都在不断更新,新的用户提交 ,打开文档后,顶部的工具栏会有其他菜单可视化链接,自定义图形。NO8.Dipityhttp://www.dipity.com/没有什么比我们在地球上的历史更有趣。已经有很多的事件在过去10年到20年,更不用说十年到百年! Dipity 是一个奇妙的工具,他用来创建和嵌入自定义的互动时间表。用户可以在重要日期进行标记,包括照片,链接,音频,视频和其他形式的媒体。该服务需要您在创建时间表前注册一个帐号。选择一个免费的计划,在日后他们提供升级到保费计划http://www.dipity.com/premium/plans。幸运的是,该网站会提供公共的最流行的时间表成员,所以你可以很容易地通过排序动态时间表去发现一个令人兴奋的细目清单。我个人最喜欢的是史蒂夫工作的生活和事业照片甚至直到2011完全格式化。http://www.dipity.com/StevePro/Steve-Jobs-Life-and-Career/NO9.WIkiMindMapWikiMindMap说到独特的展示台,维基百科也是一个网络,虽然你没有看到尽可能多的开发商,但是Wiki包含一个大的离谱的数据量! WikiMindMap可以让你选择一个区域,然后输入网址的页面。如果您的关键字不完全匹配了一个页面,应用程序将提供给您最亲近的建议。圆圈内产生的链接将引出到主Wiki页面,而刷新链接打开的选项的树。这些都是相关的链接拉断主维基页面协调您的关键字。它也很容易通过点击链接刷新图标切换到一个新的根节点。NO.10Axiis- Browser Market Sharehttp://www.axiis.org/examples/BrowserMarketShare.htmlAxiis 是用于数据可视化软件的最流行的网站之一。在他们的网页,你可以把酷炫的程序下载到您的PC或Mac电脑上运行。W3Schools已经记录用户和跟踪浏览器几年了。 Axiis编制从2002到2009与最流行的Web浏览器形成一个美丽的可视化图形。和众多上市的包括Safari浏览器,网景,IE浏览器和谷歌Chrome浏览器合作。名单尚未更新为2010/2011 ,但我们可能会看到公布在未来数月更新的信息图表。国内的话,做得好的应该是财新的数据新闻实验室和网易了。文章原刊载于数据新闻网(jake的1KE主页)。作者Jake为网页与手机平台设计师。请关注微信公众号:“wow1ke”更多资料:财新数据可视化实验室数据很大你想看看?没有这些可视化工具你可能看不懂发布于 2015-05-08​赞同 3297​​34 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续泰三主机游戏/消费电子/数据可视化/入门产品狗201 人赞同了该回答我个人JavaScript用的比较多,在JavaScript上有好几个非常好用的第三方库,拿来做数据可视化再适合不过了。排名不分先后的简单介绍一下一号种子选手 Chart.js 这个库我个人感觉是一个风格很讨喜的库,图标相对简约,颜色也都很活泼。基本上常用的图表类别都有。而且网站做的也很清晰,documentation也比较易懂。缺点嘛就是如果想画一些稍微复杂一点的图,比如甘特图等等,这个库目前还不支持。适用于常见的图表绘制。二号种子选手 HighCharts.js这个库可以说是目前来说我最喜欢也用的最多的一个库。第一个原因是,官方自带了肥肠肥肠多的demo!(咳咳,才不是我懒)而且,每一个demo都有像下图这样可以在JSFIDDLE里面调试的源代码,可以说是欲求必满了。基本上想做什么图标,在官方的demo里面翻翻都能找到。即使找不到完美复合需求的,也一定能找到类似的,稍微改改就能用了。可以说是效率神器除了常规图表之外,HighCharts下面还有一个专门针对数据地图的Highmaps系列。这个系列的包括了从世界地图到包括中国在内的各个数据地图的模板。具体的使用可以看我在另外一个问题下面的回答怎么在 Excel 上做数据地图?​www.zhihu.com这个库要说缺点嘛,就是Highmaps虽然有中国地图,但是并不支持用中文来作为城市或者省份的ID,用起来不如后面我会说到的一个库那么方便。除此之外,墙裂推荐!三号种子选手 amCharts其实amCharts的特点和HighCharts的特点很类似的,也有大量的demo和非常易于调试的源代码,amCharts下面也有amStocks和amMaps两个系列,分别针对金融/股票数据和地图数据。下面这个图官方在stock类别下面的一个demo,注意下面有一个滑动条,是可以放大缩小走势图的时间区间的。说实话两个库的demo类比很想,网站长的也挺像的,一度让我怀疑是不是背后是一个团队= = 我个人接触HighCharts.js比较早,所以用的顺手了,也自然更喜欢一些。不过amCharts比HighCharts.js多了甘特图的官方支持,虽然目前的类别还好不是很多,但是HighCharts.js在甘特图方面截止目前为止还是没有支持的。四号种子选手 D3.js说到用JavaScript数据可视化是不可能不提D3.js,因为D3.js实在是知名度太高,也确实很强大。但是真倒让我推荐这个库,我倒觉得心情有点复杂。原因很简单,它很强大,但也相对很复杂。我刚开始用JavaScript做数据可视化的时候,上来就选择D3.js (以为听人说过太多),但结果我想用自己的数据画一个柱状图,光看documentation就看了半天,还是没有太搞明白。因为他不像前面我介绍的几个库,想画什么类型的图几乎就是括号里面写一下那个类型的英文就搞定,D3需要你比较系统的看完官方文档才会对如何用其画出想要的图表有一个比较好的了解。但是,也正是因为如此,如果你真的掌握了D3,你所能画出的东西将不再局限于官方demo里面给出的那些例子,你可以做出完全复合自己特定需求的数据可视化,而不再拘泥于格式和类别。比如下图就是我之前坐过的一个项目所以我对D3.js想说的是,不建议新手从D3入门,但是推荐给熟练使用js的孩子和有很特定或者复制可视化需求的孩子。五号种子选手 ECharts看到这个带baidu的域名相比大家也明白了,这是个咱国人自己做的库。同样,这个库也有大量的官方实例demo,而且看上图右边栏就知道了,几乎覆盖了常用可视化图表的所有类别,非常方便了。而且因为是国内的大牛们做的库,所以很多案例啊数据啊也更加本土化,在国内的孩子用起来应该会更方便一些。不过还有两点我觉得很棒,首先这个库是完全开源免费的,无论是私用还是商用都可以。其次是ECharts有一个自己的社区,在这个社区里面用户可以上传自己制作的可视化案例和大家交流。也可以提问求助,还算是个挺活跃的社区。能和其他的人一起互动从来画图也没那么枯燥了是嘛关于ECharts我稍微觉得不太方便的一点事,在官方案例的源代码中,只给了JavaScript的代码,不像前面提到的JSFIDDLE中把html,css和JavaScript代码分栏列的很清楚。上面大致介绍了一下五个我个人常用的数据可视化的库。但是如果我说。。上面所有的库你其实都能在Excel用,并且可以用Excel里面的数据来画图,你相信么?其实Excel上面有一个叫Funfun的插件,这个插件可以让用户直接在Excel里面编写并且运行JavaScript代码,也因此可以使用上面介绍的JavaScript的第三方的库。感兴趣的孩子可以看我另外的一个回答进去了解一下Excel 有什么神奇用途?​www.zhihu.com以上,peace编辑于 2018-01-23​赞同 201​​15 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续Alfred数据室用数据看世界。微信公众号:Alfred数据室,合作见简介。96 人赞同了该回答在这个回答里学习到了很多东西,作为一个数据猿,我也来推荐一些实用的数据可视化工具,这些工具包含:1. 最近很火的动态条形图工具2. 各种Python数据可视化第三方库3. 其它语言的数据可视化框架1. 最近很火的动态条形图工具最近类似于这种动态条形图看起来非常酷炫,在朋友圈和某音等平台非常火,以下是我总结的用于绘制动态条形图的简单易用的工具:1.1 FlourishFlourish是一个在线数据可视化网站,可以快速地把表格数据转换为各种各样好看的图表,并且,它提供的Bar Chart Race(动态条形图)有一套完整的参数让我们可以绘制出自己想要的动态条形图。除此之外,它还可以用于绘制其它各种各样的数据图,绘制完成之后可以发布并且嵌入到网页或者PPT中。链接:https://app.flourish.studio/templates1.2 Power BI + Animated Bar Chart Race插件Power BI是微软发布的交互式数据可视化BI工具,可以快速地把数据转化为各种漂亮的可视化图表。为了在Power BI上也可以绘制出动态条形图,Wishyoulization开发了Animated Bar Chart Race插件,在Power BI的marketplace里面搜索下载之后便可以使用。除此之外,Power BI这款商业分析工具还可以制作出更多漂亮的图表,协作并共享自定义仪表板和交互式报表等。1.3 花火hanabi花火hanabi是一款在线数据可视化工具,它制作出来的图表非常符合扁平化的审美要求。它的动态条形图提供了各种图表设置,可以让我们轻松地制作出符合自己要求的动态条形图,并且可以把制作好的图形直接导出为GIF、MP4格式。链接:http://hanabi.data-viz.cn/templates官方文档:http://hanabi.data-viz.cn/help2. 各种Python数据可视化第三方库Python正慢慢地成为数据分析、数据挖掘领域的主流语言之一。在Python的生态里,很多开发者们提供了非常丰富的、用于各种场景的数据可视化第三方库。这些第三方库可以让我们结合Python语言绘制出漂亮的图表。2.1 BokehBokeh是一款基于Python的交互式数据可视化工具,它提供了优雅简洁的方法来绘制各种各样的图形,可以高性能地可视化大型数据集以及流数据,帮助我们制作交互式图表、可视化仪表板等。官网链接:https://bokeh.org/GitHub链接:https://github.com/bokeh/bokehGithub Star:11.9k2.2 pyechartsEcharts(下面会提到)是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。当Python遇上了Echarts,pyecharts便诞生了,它是由chenjiandongx等一群开发者维护的Echarts Python接口,让我们可以通过Python语言绘制出各种Echarts图表。官方文档链接:https://pyecharts.org/#/zh-cn/introGitHub链接:https://github.com/pyecharts/pyechartsGitHub Star:7.2k2.3 plotly Pythonplotly 是一个交互式开源数据可视化框架,它具有Python、R、Javascript等语言的API接口。plotly Python绘图库可以制作交互式的线图、散点图、面积图、条形图、箱型图、分布图、热力图、子图、极坐标图、气泡图等多种发行级别的图形。官方文档链接:https://plot.ly/python/GitHub链接:https://github.com/plotly/plotly.pyGitHub Star:5.6k2.4 AltairAltair是一个声明式的Python数据可视化库,让我们可以把更多的时间专注于数据理解。Altair的API是简单、友好的,它建立在强大的Vega-Lite可视化语法之上,让我们可以使用最少的代码绘制出漂亮的可视化图表。官方文档链接:https://altair-viz.github.io/GitHub链接:https://github.com/altair-viz/altairGitHub Star:4.2k2.5 VisPyVisPy是一个高性能的、交互式的数据科学可视化Python库。它基于OpenGL库,可利用GPU计算来展示大型数据集,可以绘制高达百万数据点的高质量交互式科学图形、实时数据、3D图形等。官方文档链接:http://vispy.org/documentation.htmlGitHub链接:https://github.com/vispy/vispyGitHub Star:2.1k2.6 missingnomissingno是用于绘制缺失数据的Python可视化模块,它提供了灵活易用的用于展示数据集完整程度的可视化组件,让我们可以一目了然地获取到缺失数据的模式。GitHub链接:https://github.com/ResidentMario/missingnoGitHub Star:1.8k2.7 HoloViewsHoloViews是一个开源的Python库,致力于让数据分析和可视化更加简单。它让我们可以用更少的代码去展示想要展示的图形,把专注力集中在数据探索上,而不是绘图的过程上。官方文档链接:https://holoviews.org/GitHub链接:https://github.com/pyviz/holoviewsGitHub Star:1.4k2.8 MayaviMayavi是一个用于绘制交互式3D科学数据的Python库。官方文档链接:http://docs.enthought.com/mayavi/mayavi/GitHub链接:https://github.com/enthought/mayaviGitHub Star:6473. 其它的数据可视化工具3.1 Echarts前面说过了,Echarts是一个开源免费的javascript数据可视化库,它让我们可以轻松地绘制专业的商业数据图表。官方文档链接:https://www.echartsjs.com/zh/tutorial.html3.2 AntV G2G2 是一套基于可视化编码的图形语法,以数据驱动,具有高度的易用性和扩展性,用户无需关注各种繁琐的实现细节,一条语句即可构建出各种各样的可交互的统计图表。官方文档链接:https://antv.alipay.com/zh-cn/g2/3.x/index.htmlGitHub链接:https://github.com/antvis/g2/GitHub Star:8.2k3.3 TOAST UI ChartTOAST UI Chart是一个漂亮的图表库,可用于可视化统计数据。它开源、易用、支持各大主流浏览器、支持通过自定义选项设置和主题来更改图表。官方文档链接:https://ui.toast.com/tui-chartGitHub链接:https://github.com/nhn/tui.chartGitHub Star:4.2k更多数据可视化工具持续更新中~另外,欢迎大家关注微信公众号“Alfred数据室”,更多的数据可视化项目将在这里更新哦~编辑于 2019-10-31​赞同 96​​2 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续美数课课代表655 人赞同了该回答之前看到一个国外妹子用了24种工具制作一个相同的图表,比较了12款可视化软件和12个编程/图表库,并针对工具/图表库的侧重度,灵活程度,图表创新性,交互效果四大方面,写了一篇一级棒的文章。本课代表编译了这篇文章和大家分享,便于大家更加了解这些可视化工具与编程的优缺点。(ps:原文基于CC Attribution 3.0版权协议,编译文在原文基础上有删改)———————————————今年5月,这个妹子给自己设置了一个挑战:尽可能尝试使用多种多样的编程语言或者软件来进行数据可视化。为了比较这些工具,她利用这些工具重复制作了同样的一张散点图。基于结果,她还发布了两篇文章:一篇是用12种软件做一个相同的图表,另一篇是用12种编程/图表库做一个相同的图表。下图展示了她使用12个不同的软件制作同一张散点图的过程:(想看动图的可以戳这里)这是12种编程/图表库制作出来的效果:她从这些可视化软件/图表库中认识到:There Are No Perfect Tools, Just Good Tools for People with Certain Goals.没有十全十美的工具,但是如果确立(可视化)目标,就能找到合适的工具去实现。数据可视化在很多领域都有应用,比如自然科学,商业当然还有新闻业。(插播:本美数课课代表从事的数据新闻~)所有这些领域都有不同的需求——但即使在数据新闻领域,不同的场景下呈现的方式和效果也不同,因此不存在一个完美的工具可以满足所有的需求。下面是她在制作中曾遇到过的一些矛盾,也是数据可视化工作者常常遇到的情况。1)分析 VS 展示:是想使用工具(R, Python)来分析数据,还是更注重于构建可视化效果(D3.js, Illustrator)?有些工具(比如说 Tableau, Ggvis, Plotly)试图在这其中谋求平衡,既可分析又可展示。她根据分析和展示上的侧重性对可视化工具和编程语言们进行了排列:可以看到工具类的往往更注重展示,而编程类的比较平均,各有侧重点。2)数据管理如果制作可视化的时候需要更改源数据怎么办?在这方面,这些工具或编程语言的灵活性如何?低灵活性:比如在Illustrator中,即使你只是轻微修改了数据,也需要重头开始制作图表,这种工具还不方便进行数据管理。中灵活性:比如在D3.js中,可以单独处理或修改数据,然后再重新导入数据文件来更新可视化结果。高灵活性:比如在Plotly和Lyra中,导入数据后,可以直接在该工具中修改或是增减新数据。3)传统图表 VS 创新图表:如果你只需要基本的图表类型,如柱状图或折线图,Excel完全可以满足啦~但你如果想创建表现形式更为丰富的互动图表,比如点击可以出现酷炫的交互效果,像D3.js之类的编程语言就更适合啦,但是学习此类工具的门槛也往往更高,有着陡峭的学习曲线和冗长的代码。或者也可以使用Processing,用它制作这张散点图的代码长度只有D3.js的一半。还有Lyra,它不需要任何代码基础,但也可以让你轻松修改数据有关的视觉元素。下图是她对可视化软件和编程语言两类的灵活性的评价排列:4)交互图表 VS 静态图表:你是需要创造基于网页的交互图表(如D3.js, Highcharts能做到的),还是PDF/SVG/PNG形态的图表就能满足你 (R和Illustrator可以做到)?几年前,互动图表曾受到高度追捧,但现在关注焦点慢慢从“看起来怎么样”转移到“什么才更有意义”。对于分析部分,交互特性往往也是很有必要存在的。Plotly和R的库Ggvis就可以让读者轻松地将鼠标悬停在可视元素上来查看基础数据。下图是作者对于软件/编程的在静态和交互的划分:看完了以上四个方面,There Are No Perfect Tools, Just Good Tools for People with Certain Mindsets.还是那句话,没有十全十美的工具,不同的工具适合不同的思维方法。人各有长处,何况工具呢?它们都是依照特定的制作思路和功能被开发的,而真实使用场景下,使用者的思路和开发者们预想的方式可能会不同。开发者们往往会受到以前使用工具和他们同事的影响,况且他们也有着非常不同的专业背景:比如新闻学、统计学、计算机科学、设计专业等等等。我的朋友Alberto Cairo曾经像我推荐过Yeeron和InZight两个工具,但是我觉得很难用。而他觉得难用的Lyra,却是个给我带来诸多启发的工具。这是因为我俩背景不同:他的首要自我认知是记者,其次才是设计师;而我则认为自己主要是个设计师。所以他喜欢能发现故事的可视化工具,而我则喜欢更高的设计自由度。We Still Live in an “Apps Are for the Easy Stuff, Code Is for the Good Stuff” World.我们仍然更认同“可视化软件更容易上手,但写代码可以做出更好的作品”。(所以想入可视化黑洞的同学们,学代码吧!hello world:)大多数软件很容易上手,但功能有限。大多数编程语言/图表库相对较难学习,但提供可以更多的灵活性和选项。下面的图表是原作对学习的灵活性和难度之间的关联排列:可以看出大多数编程语言/图表库处于高难度和灵活多变的区域,而大多数支持一键生成的可视化软件则处于低难度与不灵活的区域。作者还提到她自己很喜欢像Plotly,Tableau,Lyra和NodeBox这样的软件,只需要通过点击和拖动就可以制作图表,且拥有很高的灵活性。希望可以看到更多这类的工具,甚至希望能够把软件的可视化能力开发得像编程一样强大,当然这是一个很大的挑战。Excel就是一个很好的例子。它不但对初学者来说很容易上手,也能为Excel大神们提供了很大的灵活性。“Every Tool Forces You Down a Path.”每种工具都会引你走向一条路……你想要站在宇宙中心去呼唤……是绝对不行的,要勇敢的走起来先!加斯特Do it!附上原文:WHAT I LEARNED RECREATING ONE CHART USING 24 TOOLS这个妹纸的其他文章(⚆ᴗ⚆)1)One Chart, Twelve Tools2)One Chart, Twelve Charting Librariestwitter:@lisacrost//2017年,本美数课课代表要学代码了!p5.js
var button;
var like = 0;

function setup(){
createCanvas(100, 100);
button = createButton(“like”);
button.mousePressed(likePlus);
}

function likePlus(){
like++;
button.html(like);
}
编辑于 2016-12-29​赞同 655​​10 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续Boyka一介书僮,颜良而文丑(回答被收藏1335000次)1,049 人赞同了该回答楼上的牛人们推荐一大堆外文网站让普通人怎么用?!这可不是简单地撸个图片摘个文字那么简单。我还是推荐几个适合普通人以及新手使用的吧,以下网站皆为中文版:① BDP个人版链接:https://me.bdp.cn/home.htmlBDP作为新一代的云端数据分析平台,具备无缝数据接入功能,是一款兼具强大数据处理和灵活易用可视化分析的高效工具,简单的3步即可完成数据分析。BDP提供近30种图表类型,其中包含词云、漏斗图、地图、雷达图等等。同时BDP还支持多端查看数据,帮助用户快速完成多数据整合,快速挖掘隐藏的数据价值,用数据提高业绩。② ECharts链接:http://echarts.baidu.com/ECharts,商业级数据图表,一个纯Javascript的图表库,可以流畅的运行在PC和移动设备上。底层依赖轻量级的Canvas类库ZRender,提供直观,生动,可交互,可高度个性化定制的数据可视化图表。ECharts在支持常规图表的前提下,同时提供模块化引入和单文件引入,在开发时用户可以引用所有ECharts开发文件,方便开发和调试。而在项目发布后也可以去除不需要的文件以加快页面响应速度。③ 图表秀链接:http://www.tubiaoxiu.com/图表秀,一款免费的在线图表制作工具,支持自由布局与联动交互分析。页面设计简洁、上手简单,一共提供10个类54款图表模型,其中包含传统图表、词云、气泡图、双线图、KPI图表等等。发布于 2017-03-20​赞同 1049​​17 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续腾讯技术工程​已认证的官方帐号180 人赞同了该回答浏览了一下排前几名的答案,基本都是一下推荐了很多,好处不少但也易犯晕。今天只推荐一款全新的:小马BI,零门槛轻松易上手的数据可视化工具,它有下面六大优点:简易接入数据拖拽式生成图表快速计算数据定期发送周报支持移动端+PC 端不用钱看看用它能干些啥?0 门槛,想得出来就做的出来通过简单的拖拽 就可以使用已接入的数据,编辑你的数据看板,所见即所得:小马提供多达 26 种组件,涵盖“文本、表格、指标卡、折线图、柱形图、饼图、面积图、地图、雷达图、漏斗、散点图、热力图、词云”等所有主流可视化图表。几乎能够满足你的一切数据可视化需求,随心所欲的挖掘业务数据的内涵,快速搭建你的业务看板。高效快捷,不止减少重复劳动的快乐支持黄金眼数据一键迁移 不是开玩笑,全程鼠标操作,点击左键就完事。 支持多种数据接入方式 数据库直连、Excel 文件上传、SQL 建表、云端数据库、API 数据接入,仅需填写一个表单,即可瞬间接入数据,开始使用。 简易数据清洗 通过创建合表关联所需数据;通过筛选过滤,清除无效数据;通过数据格式设置,确保数据可读易于使用。 秒级计算效率 在创建的过程当中,所有的图表均秒级生成,快速看到结果,及时响应,及时调整,贯彻敏捷之道。 支持报表模板化推送 系统自动定期发送移动端、邮件报表,一次报表配送,解放你的周五。 甚至可以支持文本的动态变量(也就是连文字描述里面的数值都可以自动更新。)跨平台,随时随地享受数据之美PC 端导入用户,接入数据,进行简易的页面设计,即可发布给到对应有权限的用户进行查看;在移动端上,还支持支持通过微信公众号接收报表推送。下面详细介绍下使用这款工具完成数据处理可视化的流程。一.数据接入小马 BI 的数据表接入分为“Excel 上传”、“SQL 建表”、“云端数据库”、“API 数据接入”、“多表关联”、“数据聚合”、“SQL 创建合表”等 7 种方式。其中最常用的当属“SQL 建表”和“云端数据库建表”两种方式。以“SQL 建表”为例。首先要填写基础信息和选择链接的数据库,接下来就可以自由发挥。小马支持包含:“MySQL”、“PostgreSQL”、“SQLSever”、“Oracle”、“Elasticsearch”、“Hive”等主流数据库类型。采用实时直连数据库方式并不存储数据,所以无需担心数据泄露。当然如果由于数据敏感性不能授权数据库连接也没关系,小马同样支持通过 API 方式进行数据接入。二.数据处理数据接入完成后就可以根据需要进行简单的 ETL。小马支持对数据表字段名称、类型进行编辑操作,同时可以使用“计算字段”的功能加工处理一些分析过程中需要使用到的字段,比如我们想计算商品的利润率,就可以用原表中“利润”/“销售额”得到。除此之外小马也能支持维表和数据表的关联,比如原表中销售地区是数字代号,只需要上次一张代号与地区的关系维表,并在字段类型中选择关联维表就可以完成关联操作。三.可视化分析数据处理完成后就可以开始进行可视化分析,首先计入“页面设计”,点击左上角的新增页面可以根据需要选择“新增页面”或“新增大屏页面”。页面建立完成后可以使用多达 28 种图表组件及筛选器。Step1. 用文本组件和注释功能给你的页面做一个解释说明。Step2. 通过指标表组件配置动态时间/固定时间的销量等核心信息,实时数据一目了然。Step3.用折线图配置时间(可按小时、日、月、年聚合)销售走势,通过筛选器进行地区/时间范围筛选,了解趋势概况。Step4. 了解销售趋势后再商品类目进行细化分析,总结品类的销量情况,可使用柱状图,并在图表中设置下钻来洞察子类目的详情。Step5. 接下来使用地图组件来看下每个地区的销售情况,同样使用下钻功能进行省市的切换。Step6. 除此之外,还可以进一步结合,通过设置联动组件来分析不同品类在不同地区的销售表现,辅助定制库存周期等策略Step7. 到这里已对公司大致经营状况有所了解,接下来我们看下单个 SKU 的销售表现。使用表格组件选择需要分析的维度和数值,对关键性指标进行排序。还可以设置指标阈值或预警,当满足条件时 highlight 展示或推送。Step8. 看完了商品销售数据后,我们对销售人员的业绩进行考核分析,这里就可以用到排行榜组件来展示各个维度下(地区/时间)销售人员的业绩排名。Step9. 同样我们也可以按供货率、交货期、良率、账期等对供应商进行对比分析。这里用到词云组件来按销售额来发现优秀供应商。Step10. 为了方便查看筛选,页面上还可以加上全局筛选组件,从多个维度进行页面级的筛选过滤。至此我们已从“实时数据”、“整体趋势”、“品类分析”、“区域分析”、“商品分析”、“销售人员分析”、“供应商分析”几个维度了解到了公司经营状况。以上是截图,更直观的动态效果在这里:一款零门槛轻松易上手的数据可视化工具以上就是小马 BI 的介绍,感兴趣可前往注册体验:小马官网,目前 所有功能全免费!更多干货,尽在腾讯技术。发布于 2020-03-24​赞同 180​​添加评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续量子位​2020 新知答主147 人赞同了该回答Altair是一个专为Python编写的可视化软件包,它能让数据科学家更多地关注数据本身和其内在的联系。Altair由华盛顿大学的数据科学家Jake Vanderplas编写,目前在GitHub上已经收获超过3000星。最近,Medium上一位小姐姐Parul Pandey分享了Altair的入门教程,希望对从事数据科学的用户有帮助。量子位对主要内容进行了编译整理。使用教程Parul以汽车数据为例,将一个汽车数据集“cars”载入到Altair中。cars中包含汽车的生产年份、耗油量、原产国等9个方面的数据,后面将对这些内容进行可视化处理。安装和导入Altair软件包除了安装Altair和它的依赖软件外,还需要安装其他前端工具,比如Jupyter Notebook、JupyterLab、Colab等等。Parul小姐姐推荐安装JupyterLab:pip install -U altair vega_datasets jupyterlab需要注意的是,由于Altair的教程文档中还包含vega数据集,因此也需要一并安装上。接着在终端中输入:jupyter lab,就能在你的浏览器中自动打开它啦。在代码开头别忘了导入Altair:import altair as alt完成以上准备工作,我们就可以开始绘图了开始绘制图表Altair中的基本对象是Chart,它将数据框作为单个参数。你可以这样定义它:chart = alt.Chart(cars)Chart有三个基本方法:数据(data)、标记(mark)和编码(encode),使用它们的格式如下:alt.Chart(data).mark_point().encode(
encoding_1=‘column_1’,
encoding_2=‘column_2’,

etc.)数据顾名思义,直接导入cars数据集即可。标记和编码则决定着绘制图表的样式,下面着重介绍这两部分。标记可以让用户在图中以不同形状来表示数据点,比如使用实心点、空心圆、方块等等。如果我们只调用这个方法,那么所有的数据点都将重叠在一起:这显然是没有意义的,还需要有编码来指定图像的具体内容。常用的编码有:x: x轴数值y: y轴数值color: 标记点颜色opacity: 标记点的透明度shape: 标记点的形状size: 标记点的大小row: 按行分列图片column: 按列分列图片以汽车的耗油量为例,把所有汽车的数据绘制成一个一维散点图,指定x轴为耗油量:alt.Chart(cars).mark_point().encode(

x=‘Miles_per_Gallon’
)但是使用mark_point()会让所有标记点混杂在一起,为了让图像更清晰,可以替换成棒状标记点mark_tick():alt.Chart(cars).mark_tick().encode(
x=‘Miles_per_Gallon’
)以耗油量为X轴、马力为Y轴,绘制所有汽车的分布,就得到一张二维图像:alt.Chart(cars).mark_line().encode(
x=‘Miles_per_Gallon’,
y=‘Horsepower’
)给图表上色前面我们已经学会了绘制二维图像,如果能给不同组的数据分配不同的颜色,就相当于给数据增加了第三个维度。alt.Chart(cars).mark_point().encode(
x=‘Miles_per_Gallon’,
y=‘Horsepower’,
color=‘Origin’
)上面的图中,第三个维度“原产国”是一个离散变量。使用颜色刻度表,我们还能实现对连续变量的上色,比如在上图中加入“加速度”维度,颜色越深表示加速度越大:alt.Chart(cars).mark_point().encode(
x=‘Miles_per_Gallon’,
y=‘Horsepower’,
color=‘Acceleration’
)数据的分类与汇总上面的例子中,我们使用的主要是散点图。实际上,Altair还能方便地对数据进行分类和汇总,绘制统计直方图。相比其他绘图工具,Altair的特点在于不需要调用其他函数,而是直接在数轴上进行修改。例如统计不同油耗区间的汽车数量,对X轴使用alt.X(),指定数据和间隔大小,对Y轴使用count()统计数量。alt.Chart(cars).mark_bar().encode(
x=alt.X(‘Miles_per_Gallon’, bin=alt.Bin(maxbins=30)),
y=‘count()’
)为了分别表示出不同原产国汽车的油耗分布,前文提到的上色方法也能直方图中使用,这样就构成一幅分段的统计直方图:alt.Chart(cars).mark_bar().encode(
x=alt.X(‘Miles_per_Gallon’, bin=alt.Bin(maxbins=30)),
y=‘count()’,
color=‘Origin’
)如果你觉得上图还不够直观,那么可以用column将汽车按不同原产国分列成3张直方图:alt.Chart(cars).mark_bar().encode(
x=alt.X(‘Miles_per_Gallon’, bin=alt.Bin(maxbins=30)),
y=‘count()’,
color=‘Origin’,
column=‘Origin’
)交互除了绘制基本图像,Altair强大之处在于用户可以与图像进行交互,包括平移、缩放、选中某一块数据等操作。在绘制图片的代码后面,调用interactive()模块,就能实现平移、缩放:Altair还为创建交互式图像提供了一个selection的API:在选择功能上,我们能做出一些更酷炫的高级功能,例如对选中的数据点进行统计,生成实时的直方图。叠加多个图层如果把前面的汽车耗油量按年度计算出平均值:alt.Chart(cars).mark_point().encode(
x=‘Miles_per_Gallon’,
y=‘Horsepower’,
color=‘Acceleration’
)在统计学上,我们还能定义平均值的置信区间,为了让图表更好看,可以分别列出三个不同产地汽车的耗油量平均值置信区间:alt.Chart(cars).mark_area(opacity=0.3).encode(
x=alt.X(‘Year’, timeUnit=’year’),
y=alt.Y(‘ci0(Miles_per_Gallon)’, axis=alt.Axis(title=’Miles per Gallon’)),
y2=’ci1(Miles_per_Gallon)’,
color=’Origin’
).properties(
width=600
)最后我们可以用图层API将平均值和置信区间两幅图叠加起来:spread = alt.Chart(cars).mark_area(opacity=0.3).encode(
x=alt.X(‘Year’, timeUnit=‘year’),
y=alt.Y(‘ci0(Miles_per_Gallon)’, axis=alt.Axis(title=‘Miles per Gallon’)),
y2=‘ci1(Miles_per_Gallon)’,
color=‘Origin’
).properties(
width=800
)
lines = alt.Chart(cars).mark_line().encode(
x=alt.X(‘Year’, timeUnit=‘year’),
y=‘mean(Miles_per_Gallon)’,
color=‘Origin’
).properties(
width=800
)
spread + lines更多内容本文只是介绍了Altair的一些基本使用方法,远远不能涵盖它所有的功能。如果需要了解更多,请参阅GitHub页说明:altair-viz/altair​github.com教程原文:https://medium.com/analytics-vidhya/exploratory-data-visualisation-with-altair-b8d85494795c​medium.com— 完 —量子位 · QbitAIվ’ᴗ’ ի 追踪AI技术和产品新动态量子位​www.zhihu.com欢迎大家关注我们,以及订阅我们的知乎专栏发布于 2019-02-28​赞同 147​​添加评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续PlayStation广告​不感兴趣知乎广告介绍PS Store 假期限时优惠来袭!多款热门游戏2折起!PS Store假期限时优惠来了,包括 Little Nightmares II、Ghost of Tsushima、Persona 5 The Royal、Grand Theft Auto V 等多款热门游戏低至2折起!查看详情人民邮电出版社​已认证的官方帐号171 人赞同了该回答介绍一个“全能”的数据可视化平台:DVP许多数据可视化软件都具有“交互”和“链接”的功能,但现有的科学计算环境(Scientific Computing Environment,SCE),比如MATLAB、Mathematica、sas等,都不支持这些功能。DVP的设计者针对当前数据可视化软件存在的诸多缺点进行多方面的改进,旨在实现以下几个方面的突破(部分功能仍在研发过程中):MATLAB:美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。Mathematica:一款科学计算软件,很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统、和与其他应用程序的高级连接,也是使用最广泛的数学软件之一。SAS:一个模块化、集成化的大型应用软件系统。它由数十个专用模块构成,功能包括数据访问、数据储存及管理、应用开发、图形处理、数据分析、报告编制、运筹学方法、计量经济学与预测等等。作为单一环境,与任何SCE无缝通信。已有的数据可视化软件是完全脱离SCE的独立软件。任何使用SCE的科学家、研究人员或数据分析师都不能与在数据可视化软件中可视化和发现的模式进行交互。DVP则可以与任何SCE无缝交互,就像两者都是一个环境一样,即使DVP和SCE在两台不同的机器上运行也可以进行交互,这对于连接计算云来分析大数据非常重要。DVP可充当MATLAB的工具箱,其中所有变量都通过MATLAB通信。对不同科学领域的不同图式和方法具有很高的可扩展性。现有的数据可视化软件提供了一些可视化方法,比如散点图、矩阵图、投影追踪(projection pursuit)等等,但在一些领域需要使用更复杂的方法,而任何一个数据可视化软件都不太可能提供所有可用的绘图和制图方法。DVP除了提供丰富的绘图功能,还提供了一种基于javascript的简单脚本语言,用户可以编写自己的绘图方法并集成到DVP中。通过这种方式,DVP将建立一个范围更广、内容更丰富、方法更多样的用户社区,方便大家进行技术交流。实时更新,支持来自网络流和公共本地数据库服务器(如SQL、MySQL和Oracle)的数据。当前的数据可视化软件只能从本地机器存储中静态加载数据。然而,如今很多应用程序的数据源都可以在线获取并实时更新,例如股票市场数据、全球企业数据、雅虎数据等。DVP能够方便地连接到网络流和不同的在线数据库源,始终保持连接。DVP的在线版本,可以执行所有操作,交互和动态可连接不同硬件的API,如树莓派和Arduino芯片。从硬件中也可以采集数据,比如从树莓派和Arduino芯片中采集。树莓派是一台信用卡大小的计算机,非常简单,任何人都可以对其进行编程。Arduino是一个微型控制器,旨在连接环境;芯片具有不同的湿度、光线和湿度传感器等。DVP能够提供与硬件设备接口的API。树莓派Arduino 跨平台兼容 DVP可以在不同的操作系统上运行,例如Windows,Linux,Mac和iOS。多设备渲染支持——例如触摸屏、仪表盘、交互式PDF当前的数据可视化软件只能渲染到桌面屏幕,DVP则满足了在大屏幕上展示数据的需要。通过支持基于Web的仪表盘和在线可视化,DVP还可以为企业提供业务解决方案。此外,DVP还能生成交互式PDF文档,让我们能够与PDF中的图形进行交互,实现便携性和更广泛的实用性。可自定义的图形和绘图。与大多数当前的数据可视化软件不同,DVP旨在为其图形和绘图提供完全的自定义。此外,DVP背后的设计概念是:每个活动都是带有传递参数的函数调用的结果。DVP的GUI操作只负责调用这些函数。也就是说,用户可以创建任何绘图、图形、新方法,并使用提供的脚本语言进行完全的自定义。下图是DVP与市场上可用于数据可视化或科学计算的其他软件之间的比较(均使用2013版本)。很明显,DVP能够提供的技术功能是最全面的。可视化软件包的比较。 ‘x’表示完全支持,’ - '表示部分支持。DVP提供了非常丰富的功能,但操作步骤并不繁琐,DVP的设计者还贴心地准备了一段视频:视频来源:MATLAB API|DVPDVP已经可以在线试用了,也可以直接下载安装包,需要写论文、作报告的小伙伴都可以去试试DVP究竟好不好用。 更多科技知识可关注 @人民邮电出版社 知乎机构号,我们会持续推出优质的计算机知识和图书资源。发布于 2019-07-03​赞同 171​​6 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续采悟​会计话题下的优秀答主60 人赞同了该回答好用、好看还免费的可视化工具,可以试试PowerBI。这里我就精心挑选了Power BI其中一些实用炫酷的自定义图表推荐给你,下面就慢慢欣赏吧,总有你需要的那一款。01Infographic Designer它有条形图或柱形图的特定外观,并精确控制形状,颜色和布局,以便您能够以最能说明数据故事的方式表示信息。02Walkers Animated Pictogram利用活动的人形图标组成条形图,是一个视觉上相当吸引人的动画图表。03Animated Bar Chart Race动画条形图可以帮助您直观地显示趋势随时间的变化,这些类型的图表在社交媒体上非常流行,因为它们在简洁易懂的图表中提供整体数据故事/洞察力。04Horizontal bar chart一种水平条形图,通过将类别标签放在条形图内来节省空间。05Small Multiple Line Chart小倍图,是一系列使用相同比例和轴的图表,可以轻松进行比较。06Hourglass Chart by MAQ Software可以帮你在两种情况下显示类别之间的差异和转换率。07Stacked Column Chart by Akvelon增强型堆积柱形图,允许你选择某一个堆积条,查看特定信息。08Facet Key按共享属性过滤文档,获得更加直观的视觉效果。09ChartAccent - BarChart带有丰富注释功能的条形图,可用于演示文稿,您只需单击几下即可创建带有丰富注释的条形图。10ChartAccent - LineChart带有丰富注释功能的折线图,可用于演示文稿。11word cloudPowerBI中的词云图,小巧而简洁。12Chord和弦图,展示数据之间的相互关系,非常适合比较数据集内或不同数据组之间的相似性。13Bowtie Chart蝴蝶结图,显示从一个流程或类别到另一个流程或类别的数据流,参考:PowerBI自定义图表:蝴蝶结图14Network Navigator Chart该图表允许您通过平移和缩放关系节点布局,来探索节点链接数据。15Force-Directed Graph强制布局图与弯曲的路径,用于显示数据之间的连接。16Sankey diagram桑基图,可以很方便的获取数据的来源和流向,系列的宽度与流量的数量成比例。17Box and Whisker chart通过四分位数图形化数字对数据进行分组的便捷方式,参考:三分钟掌握盒须图,轻松了解数据分布18Dot Plot by MAQ Software显示多个类别之间的分布以突出显示间隙,群集和异常值。19Cluster MapCluster Map富有表现力的图像拼接显示相关文档的群集。20Hexbin Scatterplot散点图展示在不同的六边形中,色彩饱和度表示每个六边形中点的密度,点越多,颜色越深。21Candlestick by OKViz常用于金融产品的价格变动,图表中的每个Candle通常显示四个价格值:高,低,开盘和收盘。并且可以添加多个趋势线以满足分析需要。22Ratings by MAQ Software可以选择不同的指示形状,来展示评级或分数。23Craydec Regression ChartCraydec Regression Chart是带有简单线性回归的散点图/散点图,可以处理大型数据集,您可以使用小倍数图来探索和报告多个属性。24Table Heatmap使用表格中的颜色轻松直观地比较数据。25Enhanced ScatterEnhanced Scatter引入了一些在现有散点图视觉上添加的属性,包括形状作为标记,背景图像支持和用于将元素定位到图像背景上的开发人员十字准线。26icon mapIcon Map visual允许您在地图上渲染图像和线条或圆圈,可以设置不同的地图样式,也可以显示白天黑夜。27flowmap描述地理位置之间对象的移动。28Synoptic Panel by OKViz创建包含连接到数据的区域的自定义地图。该图表允许您呈现一个或多个图像,为它们的任意部分(称为区域)分配含义。您可以动态突出显示和着色这些区域,并在其上显示多个信息。29Pie Charts Tree以树模式显示,每个节点中的饼图中显示值。此可视组件显示一个类别树,其值在每个节点的饼图中表示。30TreeViz树结构数据可视化预测与分析31Time Series Forecasting Chart使用指数平滑模型基于先前观察到的值预测未来值32Forecasting with ARIMA使用Autoregressive Integrated Moving Avg(ARIMA)基于历史数据预测未来值。33Forecast using Neural Network by MAQ SoftwareMAQ软件使用神经网络进行预测实现了一个“人工神经网络”,可以从历史数据中学习并预测未来的价值。34ValQ – Modern Digital Planning为您的业务建模并以前所未有的方式进行模拟。ValQ是一个云和内部部署的业务建模软件,使您的管理人员和决策者能够可视化和分析业务场景,并随时随地做出实时决策。35PAFnow Process Mining基于数据分析业务流程的超强大可视化,只需点击几下鼠标,流程挖掘就可以发现有关流程的隐藏信息并生成新的见解。36Text Filter提供一个搜索框,可用于过滤仪表板上的所有其他视觉效果,文本包含您指定字段的搜索。这使您可以通过关键字搜索快速查找仪表板上显示的特定内容。37Timeline Slicer时间轴切片器是一个图形日期范围选择器,用作Power BI中的过滤组件。这使得按日期维度过滤数据变得简单而有趣,参考:时间线切片器-Timeline Slicer38Time Brush SlicerTime Brush可让您通过直接拖动或刷过感兴趣的时间段来过滤基于时间的数据。参考:认识一个好玩的时间切片器-Time Brush Slicer39Filter by List by Devscope按列表筛选是一种Power BI可视化,允许用户批量应用报表的筛选值。40HierarchySlicer不同字段的层次结构,并将其用作Power BI的切片器。41Play Axis像动态切片器一样工作,它可以在没有任何用户交互的情况下激活您的其他功能视觉效果。(参考:利用这个控件,轻松制作带播放轴的条形图)42Chiclet slicerChiclet是由按钮制成的切片器,也可以水平排列以超紧凑形式的矩阵排列,作为其他视觉效果的画布内过滤器。43Enlighten Legend使用Enlighten Legend,您可以创建独立的交互式图例。自定义标记形状和数据颜色。设置标签格式选项,包括悬停颜色,让您的报表更具有创造力和灵活性。44Text Enhancer by MAQ SoftwareText Enhancer添加自定义选项,将丰富样式的文本,包括调整文本阴影,旋转,角度,偏斜,对齐等,添加到Power BI报表中。45Card Browser卡片浏览器是一个文档集查看器,具有可翻转的双面缩略图,使用双面卡浏览文档,然后单击以在适当位置查看。46Image Grid在Power BI中将图像进行可视化展示。47HTML Viewer以HTML或纯文本精美呈现您的数据。此可视化允许您以原始样式显示HTML文本字符串(例如,来自SharePoint的富文本列)以及使用换行格式化。48Timeline Storyteller时间线故事讲述者是一个富有表现力的视觉叙事环境,用于呈现时间表。您可以使用时间轴讲故事者使用时间轴表示,比例和布局的调色板以及过滤,突出显示和注释的控件来呈现数据的不同方面。49Enlighten Data Story用您的数据讲述清晰简单的故事。此可视化显示具有突出动态数据值的文本。您可以控制文本和数据值的字体大小,颜色和样式。50 Sanddance帮你快速发现海量数据背后的见解,参考:数据还能这么展示?这个图表让人大开眼界是不是已经眼花缭乱了,有些图表需要你细细探索才能更好的使用哦,以后我也会不定期介绍其中的一些图表。关于PowerBI的更多可视化效果,欢迎关注知乎专栏:Power BI星球​zhuanlan.zhihu.com如果你打算学习Power BI,可在微信公众号:PowerBI星球,回复"PowerBI",获取《七天入门PowerBI》电子书,轻松上手。喜欢了别忘了点赞支持哦。以上.编辑于 2019-09-12​赞同 60​​6 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续许媛661 人赞同了该回答可能回答得不是很切题,但是适用于习惯/想要用R、python等(统计)软件做数据可视化,尤其是画有交互功能的图的盆友们,你萌可以参考下我的推荐,蟹蟹。图片均来源于网络,侵删。以R为例。----------如果你只是单纯地想画几张(好看的)图---------首推plotly,谁用谁知道pros:光标移到某一个数据点都会显示具体内容(当然现在很多包都可以做到这点);可以任意拖拽,放大缩小;下载图片等功能(下图右上角)cons:参数太多(这也能算缺点??)导致语法略冗长;但另一方面也非常灵活,可以任意customizetips:怎么学一个功能特别强大的新的r包?答:跟着栗子学。。。用熟了之后可以自行阅读reference或者source code然后推ggplot2相信大家都很熟悉,就说一点,如果你用惯了ggplot2,只需要再加一行命令即可变成plotly的对象,实现hover/select/zoom in/download等等功能p <- ggplot(data = d, aes(x = carat, y = price)) +
geom_point(aes(text = paste(“Clarity:”, clarity)), size = 4) +
geom_smooth(aes(colour = cut, fill = cut)) + facet_wrap(~ cut)

ggplotly§
接下来是几个辅助的(小众)包rbokehBokeh是一个基于python的数据可视化library,提供各种接口。甩一个作者在userR 2016上的屁屁踢链接,里面有二十个栗子,五分钟可以过完 rbokeh by Ryan Hafenpros:有个别的图比plotly画的好,如hexbin(蜂窝图?);能画一些非常炫酷的图,(分别是屁屁踢里面的例10和例9;当时我就吓尿了;关键是要会javascript;但其实对实际的工作学习没什么帮助)cons:大部分功能plotly可以完全cover,而且hover和select功能不是每一幅图都有GGally,ggplot2的延伸推荐给学统计的童鞋们,非常适合简单粗暴的exploratory analysis,说几个例子。顺便安利下broom这个包,相信大家在学线性回归的时候都需要从summary里面取参数的估计值啊、p值啊、R方等等信息,这个包让这个过程异常方便,自动返回data frame噢~真的很节省时间。然后配合ggcoef命令,下图可视化了估计的参数和置信区间,p值的大小体现在圆点的size上还可以根据数据的类型,画不同的图展示变量之间的两两关系,自动出correlation还想更特别一点嘛,自定义ggplot2 themes吧不想读那么长的reference?没事,看看别的公司怎么做的,还是那个道理,找个栗子学就好了嘛。。。ggtech上有几个简单的themes,可以更改背景、字体(大小)、默认颜色等等-------------画完了图,你想展示?--------------以图表为主,推荐flexdashboard- 它其实是由rmarkdown文件、knit成的html页面,但是模样是个dashboard,自由设置layout;- 有一个storyboard的layout,和tableau里面那个一毛一样;- 支持各种数据可视化交互,可以添加shiny components;- 觉得table违和,可以用data.table(这又是一个神器)------------展示完了,想分享给别人?-------------先留个白。。。个人版的shiny可以上传三个到server,html页面更是想放哪放哪。但总的来说,分享不是一件非常方便的事情(至少没有其他BI软件方便,还能订阅)。有个新东西叫RStudio Connect,貌似会逐渐解决这个问题,我正在研究中,欢迎大神给我支招。----------看看别人家的公司是怎么做可视化的-----------纯分享一些use cases,不仅仅使用R做的(嗯,有的我也不知道怎么做的)FiveThirtyEight:Data Journalism Site - 再次甩一个userR 2016的视频链接FiveThirtyEight’s data journalism workflow with R,是此次会议的视频点击率排行第一噢~- 一个新闻网站有github、公布数据和代码你敢信???GitHub - fivethirtyeight/data: Data and code behind the stories and interactives at FiveThirtyEight- 这真的是“用数据讲故事”了,不过作图和解读的应该是两拨人- 当然他家(目前)最出名的还是创始人神一样的预测上次大选结果,这里丢一个wiki Nate Silver,拭目以待这次的结果Second Spectrum这个简直炸裂!!!第一次看了几段demo,连我这个对于球类一窍不通的人都热血沸腾!!!必须看视频才能体会!!!再次甩一个TED TALK Rajiv Maheswaran: The math behind basketball’s wildest moves好了我冷静下来了,这个公司主要是采集比赛过程中的信息,以篮球为例,球员运动啊、球的轨迹啊都是数据点,然后收集了很多很多场的数据之后呢,把他们可视化(真的超级炫酷),然后做分析。分析什么呢?自家球员和竞争对手的优劣啊!!!好像还能算某种情形下投篮的命中率???所以,球队想给他钱,电视台体育频道也想给他钱(如下图,主播点点屏幕就能交互了,截图到蜜汁兰花指。。。)待续待续!后记:心疼我自己,电脑上格式好好的,手机上有几段空行显示地不对劲,改了好几次也没解决……强迫症伤不起啊,读了好几遍确认没有错别字和不通顺 -_-||| 编辑于 2016-07-30​赞同 661​​26 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续净水湖前网络安全公司CTO,现退隐,研究数字营销。160 人赞同了该回答谢邀。本人以前工作的时候收集了各个平台各种行业的几十种数据可视化分析工具,让你不仅大饱眼福,而且还可以让你事半功倍。 先放图。GanttiGantti是一个开源的PHP类,帮助用户即时生成Gantti图表。使用Gantti创建图表无需使用JavaScript,纯HTML-CSS3实现。图表默认输出非常漂亮,但用户可以自定义样式进行输出(SASS样式表)。Smoothie ChartsSmoothie Charts是一个十分小的动态流数据图表路。通过推送一个webSocket来显示实时数据流。Smoothie Charts只支持Chorme和Safari浏览器,并且不支持刻印文字或饼图,它很擅长显示流媒体数据。FlotFlot是一个优秀的线框图表库,支持所有支持canvas的浏览器(目前主流的浏览器如火狐、IE、Chrome等都支持)。Pizza Pie ChartsPizza Pie Charts是个响应式饼图图表,基于Adobe Snap SVG框架,通过HTML标记和CSS来替代JavaScript对象,更容易集成各种先进的技术。Fusion Charts Suit XTFusion Charts Suit XT是一款跨平台、跨浏览器的JavaScript图表组件,为你提供令人愉悦的JavaScript图表体验。它是最全面的图表解决方案,包含90+图表类型和众多交互功能,包括3D、各种仪表、工具提示、向下钻取、缩放和滚动等。它拥有完整的文档以及现成的演示,可以帮助你快速创建图表。ProtovisProtovis是一个可视化JavaScript图表生成工具。ProcessingProcessing是数据可视化的招牌工具。你只需要编写一些简单的代码,然后编译成Java。Processing可以在几乎所有平台上运行。LeafletLeaflet是一个开源的JavaScript库,用来开发移动友好地交互地图。
OpenlayersOpenlayers可能是所有地图库中可靠性最高的一个。虽然文档注释并不完善。且学习曲线非常陡峭,但是对于特定的任务,Openlayers能够提供一些其他地图库都没有的特殊工具。PolyMapsPolyMaps是一个地图库,主要面向数据可视化用户。PolyMaps在地图风格化方面有独到之处,类似CSS样式表的选择器。TimelineTimeline即时间轴,用户通过这个工具可以 一目了然的知道自己在何时做了什么。 OpenStreetMapOpenStreetMap是一个世界地图,由像您一样的人们所构筑,可依据开放协议自由使用。OpenHeatMapOpenHeatMap简单易用,用户可以用它上传数据、创建地图、交流信息。它可以把数据(如Google Spreadsheet的表单)转化为交互式的地图应用,并在网上分享。ExcelExcel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。Charting FontsCharting Fonts是将符号字体与字体整合(把符号变成字体),创建出漂亮的矢量化图标。Highchart.jsHighchart.js是单纯由JavaScript所写的图表资料库,提供简单的方法来增加互动性图表来表达你的网站或网站应用程式。目前它能支援线图、样条函数图。Paper.jsPaper.js是一个开源向量图表叙述架构,能够在HTML5 Canvas 运作,对于初学者来说它是很容易学习的,其中也有很多专业面向可以提供中阶及高阶使用者。Dundas ChartDundas Chart处于行业领先地位的NET图表处理控件,于2009年被微软收购,并将图表产品的一部分功能集成到Visual Studio中。TimeFlowTimeFlow Analytical Timeline是为了暂时性资料的视觉化工具,现在有alpha版本因此有机会可以发现差错,提供以下不同的呈现方式:时间轴、日历、柱状图、表格等。GanttiGantti是一个开源的PHP类,帮助用户即时生成Gantti图表。使用Gantti创建图表无需使用JavaScript,纯HTML-CSS3实现。图表默认输出非常漂亮,但用户可以自定义样式进行输出(SASS样式表)。以上。发布于 2017-03-23​赞同 160​​12 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续和鲸社区Kesci​已认证的官方帐号70 人赞同了该回答数据可视化是一个化繁为简的过程,随着数据科学的发展,数据工作对可视化工具的需求更加明确:满足大数据处理的要求支持快速的收集、筛选、分析、归纳、展现响应新增的数据的实时更新目前使用中的可视化工具非常多,在高票答案中都有展示。我们尝试对现行的常用可视化工具进行了分类,包括:编程语言的可视化库传统数据分析及BI软件专门用于可视化的成品软件没有完美的工具,只有合适的应用,用户可依据可视化目标进行选择。编程语言的可视化库优势:支持海量数据处理,在海量数据深层关系挖掘上独具优势多种工具库满足丰富的展现方式,满足数据展现的多维度需求可实现数据归纳、挖掘、分析、可视化的一站式工程缺点:依赖编程基础,入门门槛较高。按照使用的编程语言,以下是我们的推荐。Python语言(附实践项目案例)Pandas–Pandas是一个能快速简单实现数据操作、整合及可视化的工具库项目案例:这十套练习,教你如何使用Pandas做数据分析Pandas基础命令速查表Matplotlib -Matplotlib的设计理念是能够用轻松简单的方式生成强大的可视化效果,然而它是一个低端库,相比于其他高端的库,需要去写更多的代码来实现可视化效果项目案例:从零开始学Python【1】–matplotlib(条形图)从零开始学Python【2】–matplotlib(饼图)从零开始学Python【3】–matplotlib(箱形图)从零开始学Python【4】–matplotlib(直方图)从零开始学Python【5】–matplotlib(折线图)从零开始学Python【6】–matplotlib(雷达图)Seaborn - Seaborn关注于统计模型的可视化,可以提供热力图等多种效果去描绘数据的整体分布情况项目案例:seaborn可视化之time series & regression & heatmapseaborn可视化学习之 categorial visualizationseaborn可视化学习之distribution visualizationBokeh - Bokeh的特点是在web端实现d3.js的交互可视化,并且独立于matplotlib项目案例:Bokeh教程学习Plotly - Plotly是一个基于web的可视化工具箱,在plotly网站上有许多强大的图表,可以通过API的方式实现调用项目案例:在K-Lab中如何使用plotlyR语言ggplot2 - R中最著名的可视化工具包ggvis - 一个可以做基于web的交互可视化工具包rgl - 在R中做3D交互可视化htmlwidgets - 一个在R中快速建立基于JavaScript内核的交互可视化工具包googleVis - 利用Google Chart工具在R中做数据可视化shiny -一个用R做交互可视化的应用R Makdown - 用R做数据分析报告的必备工具xtable - 将R中的数据对象(如data frame)转换成HTML/LaTeX代码的工具sp, maptols - 一个加载并使用包括shapefile在内的地理空间数据的工具库maps - 在地图上绘制多边形地图的工具ggmap - 一个可以下载谷歌街道地图并在ggplot库中将其设置为背景的工具quantmod -下载金融数据并做可视化、技术性分析的工具项目案例:构建对球员的评价体系尝试【R语言】其他语言D3.js-一个比较基础的可视化 js 库,可以把数据和 HTML 结构或者 SVG 文档对应起来,擅长于操作 SVG 中的路径 (path) 和几何图形,使用JavaScript进行编译Processing-数据可视化的老牌工具,使用java语言进行编译总体而言,可视化库的多样性为数据展现提供了很多可能,但全部安装也不现实。有没有一种办法,让可视化库的调用更为高效便捷?安利一下科赛 Kesci的K-lab给大家。K-lab是一个在线数据分析协作平台,目前已集成Python2、Python3、R三种语言环境,以上Python和R的可视化库K-lab已全部完成集成,用户可在K-lab直接调用,体验云端数据分析的愉悦。K-lab工具包仍在持续集成中,如有需求,欢迎在K-lab帮助中心->K-lab工具包页面添加工具包集成建议~传统数据分析及BI软件优势:免费:大多数的免费版即可支持轻量数据分析操作简单:拖拉拽就能实现交互式报表分析入门难度小:不受编程基础、数据库基础、统计基础和设计基础限制进阶可能:随着学习、使用经验的增多,使用者亦可结合技术手段做高阶应用分析缺点:海量数据处理表现差可视化受软件功能框架限制,不利于建立深层数据挖掘免费版的功能支持较弱,付费版成本较高Gartner在2017年BI商业智能和分析平台魔力象限报告中展示了当前BI工具的生态位,可以看到Tableau、Microsoft、Qlik处于领先位置,这里只介绍最受欢迎的3款BI软件。Tableau -Tableau是一个简单的、使用友好的用来迅速创建交互式可视化数据,并将它们嵌入你网站的工具。Tableau的免费版功能较弱,付费版更多是由企业采购使用。Qlik Sense- Qlik Sense在中国的热度和覆盖量少于Tableau,其免费版的实用功能相比而言更多,支持的数据源类型更为丰富(excel、csv、数据库、数据仓库等)。Microsoft - Power BI是微软推出的可视化软件,核心理念就是让用户不需要强大的技术背景,只需要掌握Excel这样简单的工具就能快速上手商业数据分析及可视化。在线图表设计工具优势:支持多种图表样式,便于汇报材料素材、媒体文案、分享交流缺点:数据分析与可视化分离,需先处理数据再上传处理图表秀-在线制作图表,支持将图表一键导出ppt和动态数据,系统自动会帮助调整布局Canva-通过搜索拖拽创造漂亮设计的软件,无需编程,可在线免费使用Visnal-一个综合图库和信息图表生成器,在内容上比一般的视觉分析工具表达更深入Icharts-一个用于创建并呈现引人注目图表的托管解决方案,支持从 Google Doc、Excel 表单和其他来源中获取数据,但免费版只允许用基本的图表类型BDP个人版-在线数据图表制作工具, 拖拽即可快速生成、制作数据图表,支持大数据实时可视化,词云、GIS地图等几十种动态可视化图表任务参考资料:深入解读《Gartner2017年商业智能和分析平台魔力象限报告》一文读懂数据可视化编辑于 2017-12-05​赞同 70​​7 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续璞石PPT微信公众号:璞石PPT(pushippt)1,220 人赞同了该回答http://weixin.qq.com/r/f3WagiXEs3jMrWHh9yBt (二维码自动识别)http://weixin.qq.com/r/f3WagiXEs3jMrWHh9yBt (二维码自动识别)编辑于 2017-06-09​赞同 1220​​65 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续PerryMIUI 产品经理710 人赞同了该回答1. Axiis http://www.axiis.org/ 基于 Flex 的数据可视化工具,准确、表现丰富。 2. Chronoscope http://timepedia.org/chronoscope/ 对于海量数据的可视化,这个工具值得一试,包含一个 JavaScript API ,可以同 Google 的电子表格,iGoogle 以及开放社会网络集成。 3. Flex http://www.adobe.com/devnet/flex/tourdeflex/web/#docIndex=0;illustIndex=0;sampleId=0 Flex 内置图表控件,可以快速生各种效果的图表,使用类似 SVG 的 FXG 技术。 4. JSCharts http://www.jscharts.com/ 一个 JavaScript 图表工具,拥有很多模板。 5. MilkChart http://code.google.com/p/milkchart 几个简单易用又功能强大的数据到图表转换工具。使用 HTML5 Canvas 对象。 6. http://Ajax.org http://www.ajax.org/ 一个纯 JavaScript 实时图表生成平台。 7. BirdEye http://birdeye.googlecode.com/svn/branches/ng/examples/demo/BirdEyeExplorer.html 用于 Adobe Flex 的可视化数据分析类库,基于 Action Script。 8. KartOO http://www.kartoo.com/ 一个非常直观的可视化搜索引擎。 9. Google Chart API http://code.google.com/apis/chart/types.html Google 的图表 API。 10. DojoX Data Chart https://user.sitepen.com/~mwilcox/Chart/DataChart.html 基于 Dojo 的图形工具 11. Dundas http://www.dundas.com/Components/Gallery/ASP/ .NET 下老牌的数据图表工具。 12. Degrafa http://www.degrafa.org/samples/data-visualization.html 一个图形框架,用于创建 UI,可视化数据,地图等。 13. Flex Monster Pivot Table and Charts http://www.flexmonster.com/flash/help/index.html?file=Examples/sample_ui/grid_chart_config.html 提供 Flex/Flash 数据透视表,用于 RIA 应用的开发。 14. 最后,我想说,借助AI, PS等工具排版也十分必要。编辑于 2011-11-24​赞同 710​​18 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续知乎用户374 人赞同了该回答小汪不才,最近的写了一篇文章【干货】你不得不知道的11款数据分析工具,貌似和这个题目的调性有一丢丢像。主要是对现在的数据可视化工具做了一下盘点,仅做个比list更详细,比深度分析更简单的内容给大家参考下,欢迎探(si)讨(bi)BI(BusinessIntelligence)即商业智能,越来越多的智能软件供应商推出可视化数据分析工具,应对企业业务人员的大数据分析需求。然而如果你觉得不是数据分析专业、没有挖掘算法基础就无法使用BI工具?NO,自助式分析工具已经让数据产品链条变得大众化,。为了更好地帮助读者选择分析工具,本文将为介绍数说立方、数据观、魔镜等11款BI-商业智能产品,排名不分先后!1.
功能列表2.
详细介绍2.1.
数说立方数说立方是数说故事新推出的一款面向数据分析师的在线商业智能产品。最重要的特点是配备百亿级社交数据库,同时支持全网公开数据实时抓取,从数据源端解决分析师难点;另外数说立方搭载了分布式搜索、语义分析、数据可视化三大引擎系统的海量计算平台,实现数据处理“探索式分析”和“秒级响应”的两个核心功能。同时数说立方是数说故事三大主打产品之一,并与其他两大产数说聚合和数说雷达实现从数据源、数据分析、到数据展示完整的数据解决方案。优点:² 即便是个人免费版,体验和功能仍然非常好;² 与自家产品“数说聚合”的无缝接入,支持定向抓取微信、微博等数据;² 功能完善,集数据处理、特征工程、建模、文本挖掘为一体的机器学习平台;² 可视化视图展现、友好的客户感知页面;² 支持SAAS,私有化部署,有权限管理;缺点:² 产品新上市,操作指导页不太完善;² 体验过程中有一些小bug;体验网址:http://t.cn/RqGv5OO2.2 数加平台数加是阿里云发布的一站式大数据平台,可以提供数据采集、结构化、加工到展示分析整套的一站式数据服务。
可采集不同系统及物理存储的源头数据,在分布式计算平台上进行数据的深度整合、计算、挖掘,将计算的结果通过可视化的工具进行个性化的数据分析和展现,也可直观的展示分析现有云上业务系统的数据库数据。优点:² 有完整的产品规划,功能完善;² 图形展示和客户感知良好;² 提供SQL查询;缺点:² 需要捆绑阿里云才能使用,一般用户还不能真正使用起来;² 部分体验功能一般,有一定的学习成本;体验网址:https://data.aliyun.com/2.3 TableauTableau是目前市面上较为成功的BI工具。产品既有针对性,又有普适性。拖放式界面,操作简单。数据兼容性强,适用于多种数据文件与数据库,同时也兼容多平台,windows、mac、Online均可使用。而且重要的一点是免费为用户安排现场培训或按需求进行在线培训。优点:² 处于行业领导者地位,功能完善;² 有较好的图形展现与客户感知;² 新产品开始支持云端展现,但是需要客户端支持;缺点:² 相比于商业智能BI,更像一个基于数据查询的数据展示工具;² 处理不规范数据、转化复杂模型比较难;² 无法处理大量数据;² 国内网络连接Online版速度较慢;体验网址:http://www.tableau.com/zh-cn24 QlikQlikView只需轻轻单击几下,就可以对所有数据源进行合并、搜索、可视化和分析,可在不影响性能的前提下连接到多个数据源;其次视图种类丰富,界面简洁,互动性强,总体来说是一款简单易用的BI产品。Qlik用户可通过各类可视化效果,将Qlik扩展到任何应用程序中。另外用户也可以通过使用标准的和最新的网络API,可将可视化效果数据嵌入网站或应用程序。优点:² 产品功能完善,图形展现和客户感知良好;² 支持SAAS,有权限管理功能;缺点:² 有一定的学习成本;² 报表规范性要求很高;² 数据抓取功能都非常弱,需要有非常好的数据仓库作为基础;体验网址:http://global.qlik.com/cn2.5 Spotfire Spotfire服务对象是一线工作人员和日常决策人员,其交互界面形象易懂,无需写脚本语言和编写程序就可以对数据进行添加、分离操作。内置搜索引擎,可以随意查找任意信息。支持R、S+等统计、挖掘功能;有丰富、开源的R模型。标记有自身特色,提供了过滤、钻取等功能,多个标记同时还可以实现图形化的集合运算。优点:² 交互界面形象易懂,即使是普通的业务人员也能轻而易举地进行复杂的数据分析;² 不一定要建数据仓库,还可以直接从多个异构数据源提取数据进行分析;² 支持SAAS,有权限管理功能;缺点:² SAAS版只支持30M,由于是国外服务器所以上传很慢;² 不适合中国式的固定报表;² 进军中国市场较晚,国内案例较少;² 工具的适应性范围广,但是难易跨度大;体验网址:http://spotfire.tibco.com/2.6 神策分析神策分析的产品有完整的使用文档,每个模块都有详细的使用说明以及示例,降低了用户的学习成本。而且支持私有部署、任意维度的交叉分析,并帮助客户搭建专属的数据仓库。目前提供事件分析、漏斗分析、留存分析、数据管理等功能,未来预计会增加用户分群、用户人群分析、推送和异常维度组合挖掘等优点:² 专注于用户行为数据分析,不追求做大而追求做全;² 有详细的产品使用文档以及案例;² 提供SQL查询;缺点:² 更多的是demo示例,不能开箱即用;² 纯dashboard展示,并不能对单独一块数据作自定义分析;体验网址:http://www.sensorsdata.cn/2.7
BDPBDP个人版免费,只需导入数据,设定分析维度,即可实时得到图表分析结果。示例和视频教学很细致,交互页面友好。每次数据更新,对应的图表也会自动更新,可以免去一些重复制作的工作。分享环节也很贴心,报告可以一键导出为PPT、邮件发送,也可直接生成链接分享。优点:² 产品支持移动端;手机同步呈现最新数据² 首次登陆的用户可以使用免费数据;² 操作体验流畅,界面友好,功能全,总体来说是一款不错的产品;² 即便是个人免费版,体验和功能仍然非常好;缺点:² 官网的介绍比较简单;体验网址:https://me.bdp.cn/home.html2.8 永洪BI永洪BI是一款可在前端进行多维分析和报表展现的BI软件。支持拖拽操作,数据源格式多样,提供不同级别的查询支持,支持跨库跨源连接。另外永洪提供了一款数据存储、数据处理的软件——MPP数据集市,可与BI打通,使得数据查询,钻取和展示的速度大幅度提高。不过其产品用户体验一般,拖拽过于自由,导致仪表盘布局不好控制;主题样式虽多但是给人感觉样式还是很传统。优点:² 商业流程完善,给人专业的感觉;² 产品定制化的版本效果不错;² 支持的数据接入较多;缺点:² SAAS版体验很差,有一定的学习成本;² UI的视觉效果一般,整体可视化效果不够现代化;体验网址:http://www.yonghongtech.com/index.html2.9 数据观数据观的功能设计理念是极简、无门槛,所以它最大的特点就是简单。数据观数据来自云端,如:百度
网盘、微盘、salesforce等。数据上传后,马上有推荐图表,引导明确。另外产品的使用没有技术门槛,无需专业IT知识,同时适用于非专业分析师出身的业务人员,可以快速将数据转化成直观的图表,适合一开始接触数据分析工具的非专业数据从业人员。优点:² 注册只需填写邮箱,且支持明道账号登陆;² 使用引导明确,支持salesforce、百度云数据导入;² 分析结果支持链接分享,大大降低用户的沟通成本;缺点: 数据导入后,数据分析体验方面存在bug;体验网址:http://www.shujuguan.cn/2.10 FineBIFineBI分为数据处理、可视分析和分享公用三大功能模块。支持多种数据源,图表风格清爽美观,可选择任意维度分析。分析页面由控件和组件组成,控件和组件的数量是可以添加至任意多个,但是布局的交互比较僵硬,且使用逻辑有点乱,引导不明确。需要安装本地客户端才能使用。优点:² 有较为详细的行业案例与技术方案;² 产品演示和资源中心也较为清晰缺点:² 需要使用客户端,增加了使用的不便利性² 只有仪表盘展示,BI报表需要另一款产品;² 无法处理大量的数据;体验网址:http://www.finebi.com/2.11 魔镜魔镜支持自动拖拽建模,同时可视化效果库十分酷炫。用户可以邀请团队成员到自己的项目,合作进行探索分析,并且按照需求有效控制访问数据的成员权限。产品模块规划完整,有基础企业版到hadoop等5种选择为,而且可以支持定制化服务。但是可能是云平台版的缘故,使用过程中出现不少BUG,企业版的体验可能会相对好一点。优点:² 产品模块的规划比较健全,其中包括数据源导入、数据分析、仪表盘、数据挖掘和数据工厂;² 官网的设计不错,模板选择性大,颜值控可能会喜欢;² 工具使用指导清晰,使用篇和方法篇等比较详细;缺点:² 产品存在较多的BUG,UI和功能相对其他产品来说较简陋;² 部分产品模块并不能切实用于数据分析;体验网址:http://www.moojnn.com/选择一款适用的BI产品,能够大大简化数据分析的繁杂工作,提高分析效率与质量。当然,以上每个工具各有优点,工具地址都给大家了,接下来就是轮到你动手的时候了,找一个自己喜欢的工具,开始吧!编辑于 2016-04-08​赞同 374​​24 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续EasyV数据可视化​已认证的官方帐号谢邀@搞数据的靖仔圆桌收录数据可视化与数据分析31 人赞同了该回答说实话前面高赞的答案,推荐的大多数都是国外的数据可视化应用平台或者是需要编程基础的工具,你们让普通的用户咋用呀?日常工作当中根本没法快速上手,或者个人在学习数据分析的时候,难道先去学编程基础吗?可视化本身就是一个化繁为简的过程,你还让推荐一些学习成本比较高的数据可视化工具,不是自己给自己找事呢~虽然数据可视化在国内起步发展较晚,但是国内的数据可视化应用水平也在不断提高,不是外国的就是好,全英文的操作界面所以让英语水平不高的人怎么办?做数据可视化之前还要好好学英语吗?所以针对题主的问题,自荐本公司开发的数据可视化平台EasyV给大家,一款小白易上手,界面又美观,功能还强大,售后还完善的数据可视化工具。接下来长文预警 「虽然是广告,但是也是诚信诚意的广告,请大家耐心看完」本回答主要分为以下几个部分来介绍我们的数据可视化平台EasyV:小白易上手界面又美观主题很丰富功能还强大好玩又有趣可免费试用首先我先简单介绍下EasyV是个什么东西:「比较官方,大家可以简单做个了解」EasyV是一款数据可视化应用平台,用户通过EasyV可以更高效的实现数据可视化场景,产品内有丰富的模版可以满足85%的真实的可视化场景需求。海量的组件,样式精美,“拖拉拽”即可使用。3D地图还原了真实的世界,让数字孪生如此简单。此外产品还涉及了动态面板以及交互功能,让静态的大屏可以根据自己的创意灵动起来。在EasyV用户可以自己设置手机终端远程操作大屏,让汇报、讲解如此轻松。数字时代,EasyV支持多种不同的数据源接入,数字呈现不在有壁垒;截至目前已经服务1000+客户,创建3000+数字可视化大屏,致力于帮助企业更好的在数字时代实现数据价值,让数据价值看得见。小白易上手为什么我敢说小白易上手呢?首先我给大家看下EasyV的操作界面 EasyV操作界面不知道大家会不会觉得有点眼熟,EasyV的操作界面和很多设计软件非常相似,比如sketch,ps,ai等等。对,没错,EasyV想做的就是一个数据可视化大屏设计工具,所以它的操作逻辑和设计软件相似,操作简单,通过“拖拉拽”的动作就可以快速简单上手EasyV,下面我给大家展示一下EasyV的简单操作。⬇️图层:所添加的组件都会在此显示。组件:有各类型组件,如图表、文字、地图等。编辑:右侧为编辑栏,样式,数据,交互。样式:可进行常规的组件样式更改;数据:可进行组件内容修改,如数值、文字等;交互:进行组件之间的交互设置。(有兴趣可以申请账户直接开通免费试用体验 :点此申请免费试用)*EasyV数据可视化的操作界面1. 项目模板EasyV内置多种不同的场景模版,可以直接生成可视化大屏。返回进入界面,点击“新建”即可看见大量项目模板,可直接进行使用,根据自己的需求,添加或修改组件,更改数据即可。2. 创建页面 *点击页面右上角“新建”3. 组件添加*页面上方工具栏,可以添加想要的组件4.基础内容的修改*基础内容修改点击你要修改的“组件”,页面右侧工具栏,点击“数据”可更改数据和文字内容,点击“样式”可更改组件样式、进行常规操作等。如:字体、颜色、大小等,可通过直接拉拽的方式更改组件的尺寸。界面又美观 我敢说EasyV做出来的数据可视化大屏一定是行业排名前三的,多说无益,我直接上EasyV案例合集视频,大家自己感受一下~2020年超级炫酷的数据可视化大屏案例合集,建议收藏!EasyV数据可视化的视频 · 1091 播放主题很丰富EasyV内置很多丰富的优质模板,覆盖行业广阔,如医疗、教育、水利、电力、电商、园区、制造等。能够满足大多数人的普遍需求,如果有细节调整也是可以选择自定义组建功能来相互替换。EasyV模板选择功能还强大EasyV在内置组件的基础上还支持用户自定义组件开发功能,根据自身的需求开发属于自己专用的自定义组件~下面给大家介绍一下 自定义组件怎么去玩 相信各位一定都遇到过甲方爸爸这样“直击心灵的拷问”「你们的优势在哪里,我为什么要选择你们?」「我就想要这样的图表,你想办法给我做出来…」面对这样的拷问,身为乙方的我们常常哑口无言,但真的就束手无策了吗?EasyV最新上线「组件开发」功能,帮助你满足甲方爸爸的各种要求。01什么是组件开发?组件开发通俗地说就是突破平台原有的基础组件,自己开发出一个新的,包含有自己需要的功能的新组件。平台自带基础组件预览以上就是我们进入EasyV后可以使用的平台自带基础组件。熟悉了基础组件之后想不想要更进一步呢?小E就来向大家隆重介绍一下「组件开发」功能。比如以下这个柱状图:在大家的印象里,柱状图是不是一般都比较普通,没有炫酷的视觉效果,但在可视化大屏里又是不可或缺的存在。此时,客户就给你抛出了一个难题:「这个柱状图太千篇一律了,一点设计感都没有,静态图片太死板,重新改一下。02组件开发花样多what you want , what I have!找遍了平台所有基础组建的你毫无头绪,对客户的要求束手无策。在以前,也许这个时候你就遭遇了瓶颈……现在,「组件开发」功能可以帮你搞定一切问题!通过组件开发,相当于我们自己用了平台的工具包创造出了平台基础组件里面没有的东西。也就是属于我们自己的「原创组件」。比如上述这个柱状瀑布图,充分满足了客户的设计与开发需求,将动态、设计与柱状图三合一,更直观地展现出了不同年龄层的百分比分布。现在,解决了客户的第一个问题,紧接着又来了第二个问题:「能通过一个动态的组件,将我们公司的所有产品名称进行一个轮播展现吗?」有了上述的经验与灵感,这些小要求对你来说简直是分分钟的事:觉得颜色不好看?没有设计感?自己开发的组件,想怎么改就怎么改,五彩斑斓的黑都能给你搞定!同样地,传统2D地图在功能上和设计上都没有太大的问题,唯一的不足可能就是太过平面化,不够立体,而客户却要求地图不仅可以立体化,还要能够变大变小甚至转个圈。2D地图组件预览那就让我们来看看通过组件开发出来的3D地图:通过组件开发功能设计出来的3D地图预览变大变小转个圈,那都不是事,甚至我还给你附加翻个身:03如何获取组件开发包?讲了这么多,我们还没有说到重点:如何获取组件开发包和相关的帮助文档呢?这里提供两种获取组件开发工具的方式:已有EasyV帐户,想在平台上自己组件开发没有EasyV帐户但也想进行组件开发1.已有账户如果你已经申请并开通了EasyV的帐户,那么可以直接登录EasyV可视化平台:在页面最上端找到【组件开发】并单击,然后点击【下载开发者工具】然后就会跳出上述页面,跟着文字逐一进行操作即可。2.没有EasyV账户如果我没有EasyV帐户却也想自定义开发组件怎么办?别着急,申请EasyV免费试用「点此申请免费试用」即可获取相关帮助文档,帮助文档内含开发有关的所有详细资料,提供大家免费下载。好玩又有趣EasyV除了可以用来做数据可视化大屏,完成数据分析成果展示,还可以用来做些奇奇怪怪的东西哈哈哈哈,来自EasyV大屏设计师元宝的亲身体验炫酷的地图,够用现在的可视化大屏,视觉主体就爱搞地球地图,要做得好看的话,设计和开发都需要话费不少的时间,如果有一款工具已经帮我设计开发好了,还提供调各种样式参数,为什么不试试呢?来看下EasyV里的地图组件都是啥样的,以及怎么使用的。可以换肤:紫的绿的蓝的灰的,你的我的他的她的~可以点击下钻:实感的:从视觉效果上来说,提供的样式已经不需要用户再去调来调去了,基本保证了用户不用花过多的精力在样式上。当然,追求更好效果的话可以再继续调整,所有可见的样式,都暴露成了配置项参数,当然这也包括了常规的图表类组件。如果要调整静态的模拟数据(例如柱子数值、散点标记的位置等),直接切换进数据面板里填写内容和真实的坐标就好了说到修改地理点,真的秃头啊,以前都是去几家大地图开发商提供的网站里一个一个地拾取经纬度,复制粘贴,比如高德的经纬度拾取网站:网址。但Easy[V]出了一个辅助工具:EasyMap,可以一次性点击多个点生成一个json文件,这样就只用复制粘贴一次,就能批量替换地理数据了,简单来说,就是一个便捷的模拟数据生成器,很贴心很节约时间有木有?创建散点数据:创建飞线数据,自动生成记录 from 和 to 两个点的经纬度2.2 啊,是流光啊!我真的太喜欢这个组件了,因为直接上传SVG路径然后就可以了,后期修改的便利性极大,要是用Ae做,后期一旦要改,就要进Ae调了又导图,导完图还要压缩。你可能会说,就这,实际能怎么用?用在边框上呀小老弟,瞬间动感和科技感加满,要是觉得快了慢了粗了细了,直接在配置面板里调参数就OK了,so easy:3、快捷键3.1 和sketch一致的基础快捷键熟悉了sketch的同学应该会觉得这些组合很顺手,我觉得这个思路很好,保持和主流设计软件一致,让设计师不用再去记新的快捷键了。原位复制 command + D锁定/解锁图层 command + shift + L显隐图层 command + shift + H3.2 复制command+C 粘贴command+V虽然是最常见的快捷键,但我要说的是,在Easy[V]里,可以跨屏复制粘贴!这意味这,可以同时开两个大屏编辑页,将其中一个屏里发现的心仪元素,可以直接cmd+C,然后到另一个屏里cmd+V,搬素材不要太方便哦。3.3 全区域拖移 command+option+左键拖移查了半天也没查到这个操作的专业叫法,就是同时按住cmd和option,就可以像PS里一样,即使鼠标不在图层元素区域内,也可以拖移,如下图所示。这一点对于小尺寸元素的拖移特别好使,sketch里也是如此。4、做了些奇怪的东西其实,也不光是可以用来做大屏,也可以玩玩图表嘛。4.1 长了头的“柱状图”利用了数据系列里的图标配置:你也许会说,这有什么?直接丢个静态图片不也一样吗,对,用静态数据的时候没影响,但数据是动态的时候呢?改数据的时候呢?这个icon集成到图表里,后期只要改下数字,就跟着动了,不用手动调,emmm,这叫什么来着——“数据驱动”。4.2 新拟态小demo之前新拟态风格不挺火嘛,就尝试用Easy[V]做了一个小demo:预览链接备注:尽量使用谷歌浏览器访问,手机端浏览器类型太多,兼容可能存在问题,欢迎大家反馈可免费试用免费试用 :点此申请免费试用免费试用期间:运营、产品、设计、技术人员专业一对一拉群指导,解答疑惑。可视化学院:「免费视频课程」⬇️:EasyV - 袋鼠云​easyv.dtstack.com更多可视化咨询,设计师经验分享 EasyVblog - 让数据价值看得见​easyv.dtstack.com编辑于 04-21​赞同 31​​24 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续PlayStation广告​不感兴趣知乎广告介绍PS Store 假期限时优惠来袭!多款热门游戏2折起!PS Store假期限时优惠来了,包括 Little Nightmares II、Ghost of Tsushima、Persona 5 The Royal、Grand Theft Auto V 等多款热门游戏低至2折起!查看详情帆软​已认证的官方帐号圆桌收录数据分析入门指南64 人赞同了该回答最近有很多人问我有没有一些好用的数据可视化工具,领导催着要可视化结果,可是很多工具都不怎么好用。作为一名数据分析人,没有一个好的可视化工具怎么能行?其实国内外有不少可视化工具还是相当好用的,比如FineBI、Echart、Tableau等等。借这个话题我盘点了一下国内外的42个可视化工具,涉及数据分析、软件分析、图像处理等等几乎所有可视化相关领域,大家可以Mark起来当做参考。话不多说,开始盘点!1、FineBI简洁明了的数据分析工具,优点是零代码可视化、可视化图表丰富,只需要拖拖拽拽就可以完成十分炫酷的可视化效果,拥有数据整合、可视化数据处理、探索性分析、数据挖掘、可视化分析报告等功能,更重要的是个人版免费。2、http://Infogr.am十分强大的图表制作工具,本身带有十分丰富多样的模板,如果个人不满意还可以手动设计,优点也是不需要代码编程,缺点就是只能用来制作图表,更加炫酷的可视化效果实现起来比较困难。3、http://Easel.ly几年前开始流行的信息图制作软件,界面简洁、操作简便、图片精美,而且用户只需要登录http://Easel.ly官方网站即可开始进行信息图制作,在网站上你可以尽情分享和查找素材,当然有些是不免费的。4、Color Brewer强大的配色工具,你在这里面几乎可以找到任何你想要的颜色,它本身也是一个绘图系统,拥有很多配色模板,可以当做一个小工具收藏,配合其他可视化工具使用。5、ChartBlocks英国的一家公司开发的制作统计图表的线上工具,省去在Excel软件里制作图表的繁复,让图表更加多样化,无需专业的软件技能就可以轻松制作漂亮的图表,但是功能不多。6、http://Visual.ly在线图表神器,这家网站以丰富的信息图资源而著称,很多用户乐意把自己制作的信息图上传到网站中与他人分享,最近好像爆出消息还能帮助人们制作信息图,不知道免不免费。7、Nuvi一款非常简单好用的信息图形生成器,拥有好几百个模版,当然,如果你喜欢,也可以不用模版8、Dygraphs用的比较少,网站上资源也几乎没有,在国内属于小圈冷门的可视化工具,但功能其实是很强大的,不想费力找资源的建议选择其他的工具。9、EChartsECharts就不用说了,搞数据可视化的99%都知道,是一款商业级数据图表,纯JavaScript的图标库,缺点是要代码操作,小白上手难度很高,适合码农这样的数据人。10、Cytoscape适合做一些文章里的网格图、散点图、结构图、思维图,写论文、报告等场景下非常好用,适合大学生或者搞科研的人。11、图表秀适合做PPT时做一些好看的图表,图表制作功能比较强大,但是我记得导出高清图片的时候要收费,只能导标清图比较坑吧。12、BDPBDP个人版是国内海致公司旗下的数据可视化分析产品(BDP也有商业版,针对企业用户,但我非商业版用户,所以就不多说了),有多数据整合、数据合表处理、可视化分析等数据功能,总体来看数据功能还是非常全面的,虽然不免费但是成本低一些13、xdatainsight国产的一站式敏捷可视化工具,以前还比较好用,现在基本没人用了14、Tagul国外一款词云制作神器,免费的小工具,非常好用15、Tagxedo跟上面的tagul一样,也是词云制作工具,而且是在线制作网站,但是需要翻墙16、Wordle很老的信息可视化工具了,主要也是制造词云的,当年也是大名鼎鼎,但是也有很多缺点,字体颜色没有意义、可视化还很初级等17、WordItOut词语云一键生成网站,非常方便,但是没办法根据频率调整大小,功能比较粗糙18、ToCloudToCloud是一个在线免费标签云生成器,你可以设置词的长度和频率,还能提取短语,是一个比较好的标签云工具之一利用词频生成词云,你可以快速了解页面优化了某些单词19、图悦这款国内的在线词频分析工具,在长文本自动分词并制作词云方面还是很出众的,而且也容易上手,还可以自定义定制图形模板:标准、微信、地图等,切换自如,用起来体验很不错20、语义分析系统主要是用于分析文章中的各种参数,包括频率等内容,百度的语义分析系统功能还是挺不错的21、腾讯文智腾讯的中文语义网站,分析语句、篇章等,教学类平台22、polymapsPolyMaps是一个地图库,主要面向数据可视化用户,在地图风格化方面有独到之处,类似CSS样式表的选择器,用来做动态地图的23、nodebox可视化进阶神器,NodeBox是OS X上创建二维图形和可视化的应用程序,你需要了解Python程序,NodeBox与Processing类似,但是没有Processing的互动功能24、processing堪比python的编程语言,能够实现几乎所有的可视化效果,语句规范上不如python ,但是比较容易上手25、processingjs跟上面的一样,是一门可视化编程语言,ProcessingJS是它的JavaScript实现,使用HTML5的canvas,配合现代浏览器来实现web客户端的可视化技术26、TangleTangle是个用来探索、Play和查看文档更新的交互式库,既是图表,又是互动图形用户界面的小程序27、FF chartwell一款自动生成分析图的黑科技字体,字体很多28、SAS Visual AnalyticsSAS可视化分析是一款擅长做交互式可视化分析的产品,同时它同样也可以创建出一些很好的可视化图表,不过比较笨拙,不灵活29、数字冰雹国内专门做可视化的,主要是大屏,面向企业而不是个人30、Data-Driven Documents简称D3,是一个很神奇的基于Javascript的在网页上实现数据可视化的工具,不过现在已经不更新了,缺点是要学的东西太多,HTML、编程都得掌握才行31、leafletjs做全屏地图比较方便,同样是需要掌握编程基础,优点是有手机端32、CrossfilterCrossfilter是一个数据计算模型,能够很好地结合DC.JS进行数据解析绘图,属于数理类工具33、openlayersOpenLayers作为业内使用最为广泛的地图引擎之一,已被各大GIS厂商和广大WebGIS二次开发者采用,入门难度极高34、wolframalpha数学开发软件,同时也可以做数理计算可视化,属于专业性质的工具35、visme5Visme为用户提供30万张高清图片、6500种图标、750多种图表模板以及120多种字体36、databoard制作仪表板的,关注数据可视化本身,更多地关注利用可视化技术,高效,批判性地监控数据37、googlecharts文档和帮助信息丰富的 Google Charts 对于刚刚入门 Java 绘图的人来说是极佳的选择。它的文档里到处都是带注释的代码和逐步的讲解,可以直接用来把 HTML5 / SVG 图标嵌入到你的网页中。38、timeline以时间轴的形式进行可视化,别有一番风味39、FusionChartsFusionCharts 支持 vanilla Java、jQuery、Angular 等一系列高人气的库和框架。它内置90多种图表和超过1000种地图,相比 Google Charts 和 MetricsGraphics 要完整得多40、envision.jsJavaScript一种直译式脚本语言,是一种动态类型、弱类型、基于原型的语言,内置支持类型41、SigmaSigma 有着自己独特的定位,那就是图模型的绘制。它基于 Canvas 和 WebGL 开发并提供了公开的 API,所以你可以在 GitHub 上找到社区贡献的许多插件42.dc.jsdc.js 是一个开源的 Java 绘图库。它非常适合用来创建交互式的仪表盘(Dashboard),图表之间是有联系的,所以当你与其中一个部分进行交互时,其他部分都会做出实时的反馈以上只是简单盘点一下,还有很多可视化工具没有说到,大家可以在评论区指出,互相学习!编辑于 2019-08-01​赞同 64​​6 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续简道云​已认证的官方帐号13 人赞同了该回答听我的,如果你是技术小白,想追求好看的可视化报表,一定要用仪表盘!仪表盘可视化效果丰富,比如——效果1:效果2:一、11大类图表仪表盘内包含指标图、透视表、折线图、柱形图、条形图、面积图、饼图、雷达图、明细图、双轴图等图表类型,覆盖了20+图表模板:二、在操作上的亮点1、适合技术小白——拖拉拽几步,自动生成各种图表在左侧将维度、指标拉至顶部,右侧选择图表类型:演示↓2、适合excel用户——支持excel导入数据,进行处理按照图上的步骤①、②、③,进行操作:3、减轻图表更新负担——随数据上传,图表自动更新4、适合各种场景的审美需求——图表颜色/样式支持自定义比如:编辑好图表后,可以在仪表盘设计界面对图表的大小及位置进行调整。演示↓关于颜色设置,之前写过自定义教程:仪表盘个性化 | 5分钟,不用excel,你的报表更好看!5、支持交互图表,方便数据联动点击A图表的某条数据,会调动展示与之相关的B图表。演示↓还有其他,限于篇幅太长,就不放了。三、仪表盘打开路径1、从此链接进入:简道云工作台2、步骤:在工作台首页—创建空白应用>新建表单>从excel创建表单>新建仪表盘如截图演示的步骤:发布于 2019-10-10​赞同 13​​2 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续邓燊160 人赞同了该回答楼上推荐很多牛逼的工具其实对大部分用户来说使用门槛过高了,有时候大家只是想专注于数据,写出好的报表,而不是去开发,或者去搭建网站。来推荐一下前公司的免费专业数据报表制作工具 文图(http://www.wentu.io)文图的优势在于 易用 和可扩展性(更多新的功能也会陆续加入)相比d3.js 和 echarts 这些工具,他们比较难上手,毕竟还需要用户自己去学习api,搭建网站,做细节优化。文图在echarts基础上做了封装优化,以后还会加入其他工具和图表类型。修改图表数据就像excel一样简单相比excel我们的优势是在线编辑展示和文档共享。轻量而且方便。方便管理报表的文档库http://wentu.io/publish#fcc7efffa1e37cec (二维码自动识别)发布分享您制作的数据报表相比其他一些国外的数据报表制作工具 我们是本土团队,文图更符合我们中国人的使用习惯,而且有什么建议反馈到我们这里都会尽快处理(我负责前端开发,所以有bug或者体验问题都可以直接私信告诉我)。马上(真的是马上啊。。。不出意外的话预计2016.01.28)上线的文图第二版即将有自由布局,历史记录撤销重做,多款预定主题及文字样式,欢迎大家来尝试。 这个早就上线了新版的多栏布局因为IE适配还没有来得及做,敬请各位使用chrome或者firefox访问文图编辑于 2016-11-07​赞同 160​​62 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续小龙跑起来就有风13 人赞同了该回答设计师互动平台。数据可视化工具,个人在工作场景使用的3个图表类,3个地图编辑,2个地图下载工具,1个可视化设计作品网站01.图表类1.echartshttps://echarts.apache.org/zh/index.htmlEcharts 是百度提供的基于 JavaScript 实现的开源可视化库,可以流畅地运行在 PC 和移动设备上,兼容当前绝大部分浏览器。其底层依赖轻量级的矢量图形库 ZRender,并提供了组件来实现多维度数据筛取、视图缩放平移、展示细节等交互功能,是可高度个性化定制的数据可视化图表。Echarts 提供了常规的折线图、柱状图、散点图、饼图、K 线图,用于统计的盒形图,用于地理数据可视化的地图、热力图、线图,用于关系数据可视化的关系图等。Echarts 支持二维表、key-value 等多种格式的数据源,通过简单地设置 encode 属性就可以完成从数据到图形的映射。官方是提供多种配色,明暗两种模式可修改代码,进行调整。同时有大量开发者上传自己的图表2.highchartshttps://www.highcharts.com.cn/在我眼里和echarts一样Highcharts 是一个用纯 JavaScript 编写的一个图表库, 能够很简单便捷的在 Web 网站或是 Web 应用程序添加有交互性的图表,并且免费提供给个人学习、个人网站和非商业用途使用。3.antvhttps://antv-g2.gitee.io/zh/examples/interaction/brush蚂蚁金服的可视化图表,阿里团队的网站是真做的不错https://antv.vision/zh分了很多子模块,要仔细看介绍02.地图编辑1.百度地图开放平台http://lbsyun.baidu.com/编辑个性化地图支持地图编辑,编辑和下载JSON.今年的版本终于支持识图配色了。2.高德开放地图https://lbs.amap.com/getting-started/mapstyle在我眼里和百度地图差不多,看使用频率了。比百度多几个特色小功能,路况等。3.snazzymapshttps://snazzymaps.com/国外的地图编辑器,很多风格可以参照03.地图下载1.地图选择器http://datav.aliyun.com/tools/atlas/#&lat=31.765537409484374&lng=104.2822265625&zoom=4阿里地图API工具支持国内场景支持ison,svg格式最小能精确到区一级2.像素生成器https://pixelmap.amcharts.com/支持国外场景,使用中国地图时请注意支持标点和多种颗粒度填充04.可视化设计作品网站TOB design是全网首个B端及可视化产品设计师平台,主要在B端、可视化、大数据、物联网、人工智能等产品设计领域耕作。Tob Design - 超实用B端及可视化产品设计师平台​tob.design编辑于 2020-08-07​赞同 13​​添加评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续Francis创客贴创始人/设计爱好者/产品经理53 人赞同了该回答推荐一款轻量的信息图制作工具,能够非常轻松的满足我们日常ppt、文档、社会化媒体下发的信息图等场景的制作——创客贴这款工具好处在于,很轻,不需要任何现在安装,登陆网站就能用,托拉拽就可以完成各种操作,并且全部免费!(包括大量的模版、高清摄影图片、矢量素材,简直造福人类!)利用它能制作信息图表,而且支持中文输入。图表也可以进行自由编辑另外,它还非常接地气,直击痛点。除了可以在线制作信息图表之外,你还可以制作微博封面,公众号文章首图,名片,小卡片等等等等……当然,作为一个国内新兴的工具,还有一些不足需要改进~比如:没有详细的图表控件 编辑于 2016-02-26​赞同 53​​3 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续阿里云云栖号​已认证的官方帐号24 人赞同了该回答所谓数据可视化是对大型数据库或数据仓库中的数据的可视化,它是可视化技术在非空间数据领域的应用,使人们不再局限于通过关系数据表来观察和分析数据信息,还能以更直观的方式看到数据及其结构关系。数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像, 同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。为了让开发者更好地使用数据可视化工具,云栖社区组织翻译了GitHub上的 Awesome dataviz ,其几乎囊括了优秀的数据可视化框架,库和软件。涵盖了支持JavaScript,Android,C++,Golang,iOS,Python,R语言和Ruby等编程语言的数据可视化工具,精彩不容错过。内容目录
Awesome datavizJavaScript 工具图表库图形图表库
地图(Maps)d3dc.jsMiscAndroid 工具
C++ 工具
Golang 工具
iOS 工具Python 工具R 工具Ruby 工具其他工具资源参考书籍
资源网站
JavaScript 工具集图表库C3 - 以 d3 为基础构建的可重用图表库Chart.js - 带有 canvas 标签的图表Chartist.js - 具有强大浏览器兼容能力的响应式图表Dimple - 适用于业务分析的面向对象的 API
Dygraphs - 适用于大型数据集的交互式线性图表库Echarts - 针对大型数据集的高度定制化交互式图表Epoch - 可以完美创建的即时图表
Highcharts - 基于SVG和VML呈现的图表库. 免费 (CC BY-NC 可用于非盈利项目)MetricsGraphics.js - 能够针对时间序列数据进行优化Morris.js - 非常漂亮的时间序列线状图NVD3 - 使用 d3.js 实现的可重用性图表库Peity - 可创建小型内连 svg 图表Plotly.js - 支持20种图表类型的强大的声明式库TechanJS - 股票以及金融图表图形(graphs)图表库Cola.js - 通过基于约束的优化技术创建图表的工具. 和 d3 以及 svg.js 共同发挥作用Cytoscape.js - 由 Cytoscape 核心开发人员维护的用于绘制图形的 JavaScript 库.
Linkurious - 一款基于 Sigma.js 的能加快图形可视化和交互式应用的开发速度的工具箱
Sigma.js - 致力于图形绘制的 JavaScript 库VivaGraph - 针对 JavaScript 的图形绘制库地图(Maps)CartoDB - CartoDB 是一款开源工具并且其允许对网页上的地理数据进行存储和可视化Cesium - WebGL 虚拟地球仪和地图引擎
Leaflet - 对移动端友好的交互式地图JavaScript 库Leaflet Data Visualization Framework - 使用了 Leaflet 的设计用于简化数据可视化和主题映射的框架Mapael - 基于 the.js 的能够展示矢量地图的 jQuery 插件Mapsense.js - 将 d3.js 和瓷砖式覆盖地图结合起来Modest Maps - 使用 Javascript,依照 BSD 许可的瓷砖覆盖式为基础展示和交互地图库d3参见 Awesome D3dc.jsdc.js 是一个多维图表构建工具,其能够与 crossfilter 完美地配合工作
angular-dc - dc.js 的 AngularJS 指令dc.leaflet.js - 使用了 Leaflet 地图的 dc.js 图表ember-dc - dc.js 的 Ember Component Wrappers(组件包装)杂项
Chroma.js - 用于处理色彩的小型库文件
Piecon - 图标上的饼状图绘制工具
Recline.js - 使用纯 JavaScript 和 HTML 的用于构建数据应用的简单而又强大的库Textures.js - 用于创建 SVG 模式的库Timeline.js - 创建交互式时间线Vega - Vega 是一个用于创建,保存和分享交互式可视化数据设计的语法和格式Vis.js - 一个包括了时间线,网络和图表(2D和3D)的动态可视化库安卓工具HelloCharts - 兼容安卓 API 8及以上版本的图表库MPAndroidChart - 一款功能强大而又易于使用的图表库C++工具Visualization Toolkit (VTK) - 用于3D图形和图像处理和可视化的开源库Go语言工具Charts for Go - 基于 Go 的基础图表. 其能够对 ASCII、 SVG 和 图像进行渲染
svgo - 针对 SVG 的 Go 语言库iOS工具JBChartView - 同时支持线性和条形图的图表库PNChart - 使用了 Piner 和 CoinsMan 的简单并且美丽的图表ios-charts - MPAndroidChar 的 iOS 端口. 其可以使用非常简单的代码为两个平台创建图表Python工具bokeh - 用于 Python 的交互式网页绘图工具
ggplot - 与ggplot2 面向R语言的 API相同
glumpy - OpenGL 科学可视化库matplotlib - 2D 绘图库pygal - 一个动态 SVG 图表库PyQtGraph - 交互式和实时的 2D/3D/图像 绘制以及科学/工程工具seaborn - 一个能够制作极具吸引力的和展现翔实统计信息数据的图表库toyplot - 目标为大型数据图表的小型 Python 数据图表绘制工具Vincent - 面向 Vega 翻译器的 Python 工具VisPy - 基于 OpenGL 的高效科学可视化工具mpld3 - Matplotlib Graphics的 D3 渲染工具
R工具ggplot2 - 一个基于图形语法的绘图系统lattice - R语言格子图形
plotly - 交互式图表(向 ggplot2 的输出中添加了交互性), 统计图和简单网络图
rbokeh - 针对 Bokeh 的R语言接口rgl - 使用了 OpenGL 的3D 可视化shiny - 用于创建交互式应用和可视化的框架
visNetwork - 交互式网络可视化Ruby工具Chartkick - 使用 Ruby 的单线创建图表的工具其他工具不与特定平台或语言绑定的工具Charted - 一个能够从任何数据文件中创建自动化,可分享的图表的工具Gephi - 一个用于可视化和制作大型图表的开源平台
Lightning - 一个提供以API为基础的方式获取可再生,网络为基础的交互式可视化图表的数据可视化服务RAW - 由 CSV 和 Excel 文件创建的网络可视化工具Spark - 命令解释程序(shell)走势图. 其包含多种实现语言
Periscope - 直接由SQL查询语句创建图表参考书籍Design for Information 作者: Isabel MeirellesThe Best American Infographics 2014 作者: Gareth CookThe Visual Display of Quantitative Information 作者: Edward TufteThe Wall Street Journal Guide to Information Graphics 作者: Dona M. WongVisualization Analysis and Design 作者: Tamara Munzner资源网站
FlowingDataInformation is BeautifulThe Data Visualization Catalogue - 一个数据可视化工具的集合,优缺点兼具Visual Complexity - 关于复杂网络可视化的网站原文链接:Awesome dataviz GitHub 译者:贾子甲 校对:刘崇鑫 王殿进如果发现原文翻译有误,请邮件通知云栖社区(yqeditor@list.alibaba-inc.com),感谢您的支持。编辑于 2017-04-10​赞同 24​​1 条评论​分享​收藏​喜欢收起​继续浏览内容知乎发现更大的世界打开Chrome继续知乎用户202 人赞同了该回答在TED里经常看到演讲的大佬把数据present得各种酷炫狂拽叼炸天,设计狮们都看得脸红心跳的高颜值数据图表怎么做!!感觉很多国内的软件做出来的效果感觉都不够炫,贵妃看得手痒就去收罗了一些数据可视化的工具,最终精选了21款在这里拿出来,有了这些小帮手,妈妈再也不用担心怎么做数据欧耶( *・ω・)其中有几款楼上的知友们已经提到了,这里我也再重复列一下 _(:△」∠)_FushionCartsDygraphs DatawrapperLeaflet Tableau PublicPiktoChartGoogle ChartsRawiChartsGliffyCanvaHighChartsZingChartD3.jsTimeline.js InstantAtlas WolframAlpha http://Visual.ly Dipity Polymaps Excel 昨天贵妃把这些工具都整理到知乎专栏里啦!具体的工具介绍,网页和下载地址请戳这里↓↓↓↓21款酷炫「数据可视化工具」,拿走不谢! - 读点儿设计 - 知乎专栏编辑于 2015-09-29​赞同 202​​7 条评论​分享​收藏​喜欢继续浏览内容知乎发现更大的世界打开Chrome继续知乎用户417 人赞同了该回答自从看了挪威那吞剑老头TED演讲后久不能忘这么牛叉的东东。既能动画播放,又能截图当2D图表。还能自选指标。http://www.gapminder.org/world/编辑于 2014-02-21​赞同 417​​34 条评论​分享​收藏​喜欢继续浏览内容知乎发现更大的世界打开Chrome继续观远数据​已认证的官方帐号67 人赞同了该回答首先自荐自家的观远数据,专注零售领域的智能BI平台,支持各种数可视化、数据大屏、自助分析等。以下将针对不同使用者针对性推荐一些数据可视化工具,望参考。针对技术小白(2类)针对技术工程师(15个)一、针对技术小白1、Excel作为一个入门级工具,Excel是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上可选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。2、自助式BI(这里以观远数据为例)观远可视化自助分析,提供拖拽式创建分析图表的方式,普通业务员(技术小白)也可以轻松上手。并具备以下特点:AI+BI 智能数据分析平台1)、所见即所得,学习门槛低。2)、50余种图表类型,涵盖柱形图、双轴图、漏斗图、帕累托图等。在此基础上,延展出投屏、幻灯片等数据可视化呈现形式,满足绝大多数数据表达需求。3)、提供丰富的数据交互分析操作,如钻取、联动、跳转,一键点击 即可层层剖析数据,发现问题。4)、可根据业务、角色,快速搭建数据驾驶舱,在垂直领域提炼通用的分析思路和模板,即刻接入您的数据,借鉴行业最佳数据分析实践,并进行自由排版布局。界面展示:二、针对技术工程师1.Dygraphs是一个快速且灵活的开源JavaScript图表库,其允许用户探索和解释密集的数据集。Dygraphs是一个高度可定制的工具。2. ZingChart是一个JavaScript图表库,其能为大量数据提供快速和交互式的图表。3. InstantAtlas以有效的视觉方式提供交互式示意图和报告软件。4. Timeline可以制作出美观的互动时间表。5. Exhibit是由麻省理工学院开发的完全开源软件,其有助于创建交互式的示意图和其他基于数据的可视化。6. Modest Maps对于想要使用交互式示意图的设计者和开发者来说,是一个免费的图书馆。<img src=“https://pic2.zhimg.com/50/v2-42cbd9c0c740a1e59afa59619806925c_hd.jpg?source=1940ef5c” data-caption="" data-size=“normal” data-rawwi

  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数据可视化分析全文共3页,当前为第1页。数据可视化分析全文共3页,当前为第1页。数据可视化 数据可视化分析全文共3页,当前为第1页。 数据可视化分析全文共3页,当前为第1页。 简介 数据可视化是关于数据之视觉表现形式的研究;其中,这种数据的视觉表现形式被定义为一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。 数据可视化技术的基本思想是将数据库中每一个数据项作为单个图元元素表示,大量的数据集构成数据图像,同时将数据的各个属性值以多维数据的形式表示,可以从不同的维度观察数据,从而对数据进行更深入的观察和分析。 概述 数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息。但是,这并不就意味着,数据可视化就一定因为要实现其功能用途而令人感到枯燥乏味,或者是为了看上去绚丽多彩而显得极端复杂。为了有效地传达思想概念,美学形式与功能需要齐头并进,通过直观地传达关键的方面与特征,从而实现对于相当稀疏而又复杂的数据集的深入洞察。然而,设计人员往往并不能很好地把握设计与功能之间的平衡,从而创造出华而不实的数据可视化形式,无法达到其主要目的,也就是传达与沟通信息。 数据可视化与信息图形、信息可视化、科学可视化以及统计图形密切相关。当前,在研究、教学和开发领域,数据可视化乃是一个极为活跃而又关键的方面。"数据可视化"这条术语实现了成熟的科学可视化领域与较年轻的信息可视化领域的统一。 基本概念 数据可视化技术包含以下几个基本概念: 数据空间:是由n维属性和m个元素组成的数据集所构成的多维信息空间; 数据开发:是指利用一定的算法和工具对数据进行定量的推演和计算; 数据分析:指对多维数据进行切片、块、旋转等动作剖析数据,从而能多角度多侧面观察数据数据可视化:是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。 目前数据可视化已经提出了许多方法,这些方法根据其可视化的原理不同可以划分为基于几何的技术、面向像素技术、基于图标的技术、基于层次的技术、基于图像的技术和分布式技术等等。 数据可视化分析全文共3页,当前为第2页。数据可视化分析全文共3页,当前为第2页。相关领域 数据可视化分析全文共3页,当前为第2页。 数据可视化分析全文共3页,当前为第2页。 数据采集 数据采集(有时缩写为DAQ或DAS),又称为"数据获取"或"数据收集",是指对现实世界进行采样,以便产生可供计算机处理的数据的过程。通常,数据采集过程之中包括为了获得所需信息,对于信号和波形进行采集并对它们加以处理的步骤。数据采集系统的组成元件当中包括用于将测量参数转换成为电信号的传感器,而这些电信号则是由数据采集硬件来负责获取的。 数据分析 数据分析是指为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析与数据挖掘密切相关,但数据挖掘往往倾向于关注较大型的数据集,较少侧重于推理,且常常采用的是最初为另外一种不同目的而采集的数据。在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。   数据分析的类型包括:    1)探索性数据分析:是指为了形成值得假设的检验而对数据进行分析的一种方法,是对传统统计学假设检验手段的补充。该方法由美国著名统计学家约翰·图基命名。    2)定性数据分析:又称为"定性资料分析"、"定性研究"或者"质性研究资料分析",是指对诸如词语、照片、观察结果之类的非数值型数据(或者说资料)的分析。 数据治理   数据治理涵盖为特定组织机构之数据创建协调一致的企业级视图(enterprise view)所需的人员、过程和技术,数据治理旨在: 1)增强决策制定过程中的一致性与信心 2)降低遭受监管罚款的风险 3)改善数据的安全性 4)最大限度地提高数据的创收潜力 5)指定信息质量责任 数据管理   数据管理,又称为"数据资源管理",包括所有与管理作为有价值资源的数据相关的学科领域。对于数据管理,DAMA所提出的正式定义是:"数据资源管理是指用于正确管理企数据可视化分析全文共3页,当前为第3页。数据可视化分析全文共3页,当前为第3页。业或机构整个数据生命周期需求的体系架构、政策、规范和操作程序的制定和执行过程"。这项定义相当宽泛,涵盖了许多可能在技术上并不直接接触低层数据管理工作(如关系数据库管理)的职业。 数据可视化分析全文共3页,当前为第3页。 数据可视化分析全文共3页,当前为第3页。 数据挖掘   数据挖掘是指对大量数据加以分类整理并挑选出相关信息的过程。数据挖掘通常为商业智能组织和金融分析师所采用;不过,在科学领域,数据挖掘也越来越多地用于从现代实验与观察方法所
Power-BI是一款(BI)商业智能软件,是珠海奥威软件科技有限公司自主研发的软件产品,全称是:Power-BI决策分析系统。 课程简介 本课程在《Power BI 数据分析快速上手》基础上结合大量的实例,深入讲解PowerBI中看似难懂的各种概念、操作, 并结合行业中的典型案例贯穿了从初级的数据透视表工具、数据透视表选项、数据透视表的刷新、数据透视表中的排序,到中级的动 态数据透视表的创建、数据透视表函数 GETPIVOTDATA 的使用、在数据透视表中执行计算项、 可视化透视表切片器等技能点,再到高级部分的使用 SQL 语句导入外部数据源创建透视表、使用 Microsoft Query创建透视表、PowerPivot 与数据透视表、数据透视图,以及最终的一页纸Dashboard 报告呈现, 都进行了详细的讲解。 本课程适合想提高 Power BI 的数据分析人员,特别是经常需要整理大量数据的相关人员。 课程目录 第1章:【Power BI 数据分析快速上手】Power BI概述、Power Map、Power Query初识 1. Power BI简介 2.Power BI组成部分 3.Power BI的DWT 4.Power BI的版权及费用 5.Power BI的安装及演示 6.Power BI四大护法 7.Power Map之静态地图 8.Power Map之动态地图 9.Power View之功能加载 10.Power View之高交互式可视化报表使用 11.Power Query之花样数据导入 12.Power Query之数据合并(横向合并) 13.Power Query之数据合并(纵向合并) 14.Power Query之M函数 第2章:【Power BI 数据分析快速上手】Power BI之Power Pivot插件详解 15.Power Pivot之数据导入 16.Power Pivot之层次结构创建 17.Power Pivot之创建KPI 18.Power Pivot之DAX函数(一) 19.Power Pivot之DAX函数(二) 20.Power Pivot之多维数据模型的创建 第3章:【Power BI 数据分析快速上手】综合案例:Power BI之大气质量数据分析 21.案例分析_大气质量(城市信息准备工作) 22.大气质量(导入大气质量文件夹数据) 23.大气质量(处理数据) 24.大气质量(Power View界面) 25.大气质量(基于Power View界面)制作仪表板 26.大气质量(切片器样式处理) 27.大气质量(控件绑定) 28.大气质量(组合图实现) 29.大气质量(完成值联动) 30.大气质量(气泡地图制作) 第4章:Power BI Desktop 可视化应用实战 31.概念 32.运作方式 33.安装并运行 34.三种视图 35.查询编辑器 36.连接并调整数据 37.合并数据 38.创建图表 第5章:Power BI 实战:财务指标-杜邦分析仪 39.财务杜邦分析仪的概念 40.财务杜邦分析仪制作(1) 41.财务杜邦分析仪制作(2) 42.财务杜邦分析仪制作(3) 43.财务杜邦分析仪制作(4) 44.财务杜邦分析制作仪(5) 第6章:Power BI 实战:销售运营管理数据分析 45.销售漏斗关系 46.搭建多维数据模型 47.洞察风险 48.故事序章 49.故事展开 50.故事高潮 51.故事尾声 52.P0WER QUERY数据处理(1) 53.P0WER QUERY数据处理(2) 54. P0WER QUERY数据处理(3) 55.P0WER PIVOT数据处理(1) 56.P0WER PIVOT数据处理(2) 57.P0WER PIVOT数据处理(3) 58.作业
### 回答1: 《Python数据可视化编程实战》是一本适合初学者和专业人士的Python数据可视化书籍,由美国著名出版社Packt Publishing出版。该书详细介绍了Python数据可视化的核心概念和方法,探讨了matplotlib、Seaborn、Bokeh等流行的数据可视化库,以及如何将数据可视化应用于数据分析、交互式Web应用等方面。 本书包含了大量的实例和案例,包括基本的图表类型、不同数据集的可视化和交互式可视化等内容。书中每章末尾都有习题,附带源代码和数据集以供练习和实践。此外,书中还会涉及到一些常见的Python数据处理操作、如何使用Anaconda环境、Jupyter Notebook等工具开发Python数据分析和可视化应用等。 总的来说,《Python数据可视化编程实战》是一本完整的Python数据可视化编程指南,能够帮助读者快速掌握Python数据可视化的基础和高级实践技巧,提高数据处理和分析能力。如果你是一名前端开发人员、数据分析师或者软件工程师,或者对数据可视化有兴趣,那么这本书不容错过。 ### 回答2: Python 数据可视化编程实战 PDF 是一本非常实用的书籍,其提供了众多的代码实例和案例,帮助读者更好的了解 Python 数据可视化编程的基本理论和实践技能。 本书首先介绍了 Python 的数据可视化组件库 matplotlib,并详细介绍了 matplotlib 的各种实用性函数。其次,本书还介绍了 seaborn 和 bokeh 两个组件库的使用方法,这些组件库可以让用户轻松地创建出美观的图表和交互式数据可视化工具。 在本书的后半部分,作者还介绍了如何使用 Python 进行数据分析和数据可视化,让读者了解如何将数据可视化技术用于实际的数据分析任务中。 总的来说, Python 数据可视化编程实战 PDF 是适合各个层次的读者阅读的一本实用的书籍。如果你是初学者,它会帮助你快速地入门 Python 数据可视化编程。如果你已经具备一定的 Python 和数据处理方面的技能,那么本书也会对你提供一些新的思路和实用技巧,让你更加高效地使用 Python 进行数据可视化编程。 总之,如果你对 Python 数据可视化编程感兴趣,那么这本书值得你阅读和购买。 ### 回答3: 《Python 数据可视化编程实战》是一本系统讲解Python数据可视化实践的书籍,涵盖了数据可视化的基础知识、多种可视化工具的使用方法以及实际案例的分析等方面内容。 本书从数据类型、数据分析和探索开始介绍,进而讲解如何使用Python实现各种数据可视化。包括Matplotlib、Seaborn、Bokeh、Plotly等多种Python可视化库的使用方法及其优缺点。通过各种示例,读者能够了解各种可视化效果的应用场景及具体实现方式。 本书还介绍了如何使用数据可视化来解决实际问题,包括销售数据分析、股票价格预测和分类器决策边界可视化等。读者可以根据这些案例,进一步了解如何将数据可视化方法应用到实际工作中。 总之,《Python 数据可视化编程实战》是一本很好的Python数据可视化书籍,读者可以通过学习本书,掌握各种数据可视化技术,并且了解如何使用数据可视化解决实际问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值