酉矩阵的定义

本文介绍了酉矩阵的基本概念,包括其定义、主要性质及其与正交矩阵的关系。具体阐述了酉矩阵的共轭转置特性、行列式的特殊值以及由单位正交向量构成的充分条件。

酉矩阵是一个n阶复方阵U,其共轭转置矩阵等于逆矩阵,即满足A^{H}U = UA^{H} = I,其中A^{H}表示U的共轭转置,I为单位矩阵。

酉矩阵的数学定义

酉矩阵(Unitary Matrix)是复数域上的方阵,定义为满足以下条件的n×n复矩阵U:

  1. 共轭转置等于逆矩阵‌:A^{H}U=UA^{H}=I,其中A^{H}表示对U先取共轭复数再转置,I为单位矩阵。‌‌‌‌ 
  2. 几何意义‌:酉矩阵描述的变换保持复数向量空间的内积和向量长度不变,类似于实数空间中的正交矩阵。‌‌ 

关键性质

  • 内积保持性‌:对任意复向量x、y,有⟨Ux,Uy⟩=⟨x,y⟩。‌‌ 
  • 特征值特性‌:酉矩阵的特征值均为模长为1的复数(即单位圆上的点)。‌‌ 
  • 正交归一性‌:其列向量和行向量均构成复数空间的正交归一基。‌‌ 

1.酉矩阵(unitary matrix)若n阶复矩阵A满足

 A^{H}A=AA^{H}=E,其中E是单位矩阵, A^{H}是A的共轭转置,
则称A为酉矩阵,记之为  A\in U^{N\times N}   。
2.性质
如果A是酉矩阵
(1)  A^{-1}=A^{H}
(2)  A^{-1}也是酉矩阵;
(3) det(A)=1;
(4)充分条件是它的n个列向量是两两正交的单位向量。

3.酉矩阵是正交矩阵的推广

应用领域

酉矩阵在量子力学(如量子态演化)、信号处理(傅里叶变换)和通信工程中具有核心作用,因其能保持系统稳定性(如量子态的模不变性)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值