酉矩阵是一个n阶复方阵U,其共轭转置矩阵等于逆矩阵,即满足U = U
= I,其中
表示U的共轭转置,I为单位矩阵。
酉矩阵的数学定义
酉矩阵(Unitary Matrix)是复数域上的方阵,定义为满足以下条件的n×n复矩阵U:
- 共轭转置等于逆矩阵:
U=U
=I,其中
表示对U先取共轭复数再转置,I为单位矩阵。
- 几何意义:酉矩阵描述的变换保持复数向量空间的内积和向量长度不变,类似于实数空间中的正交矩阵。
关键性质
- 内积保持性:对任意复向量x、y,有⟨Ux,Uy⟩=⟨x,y⟩。
- 特征值特性:酉矩阵的特征值均为模长为1的复数(即单位圆上的点)。
- 正交归一性:其列向量和行向量均构成复数空间的正交归一基。
1.酉矩阵(unitary matrix)若n阶复矩阵A满足
,其中E是单位矩阵,
是A的共轭转置,
则称A为酉矩阵,记之为 。
2.性质
如果A是酉矩阵
(1)
(2) 也是酉矩阵;
(3) det(A)=1;
(4)充分条件是它的n个列向量是两两正交的单位向量。
3.酉矩阵是正交矩阵的推广
应用领域
酉矩阵在量子力学(如量子态演化)、信号处理(傅里叶变换)和通信工程中具有核心作用,因其能保持系统稳定性(如量子态的模不变性)
本文介绍了酉矩阵的基本概念,包括其定义、主要性质及其与正交矩阵的关系。具体阐述了酉矩阵的共轭转置特性、行列式的特殊值以及由单位正交向量构成的充分条件。
4894

被折叠的 条评论
为什么被折叠?



