教程见:https://www.joinquant.com/post/13149
一、初识量化交易
概括:量化是全自动、编程化的交易模式。
二、量化策略的基本框架
概括:写python代码,周期执行即可。
三、python基本语法与变量
略
四、下单、函数、API
概括:调相关API
五、获取context数据、条件判断
概括:context相当于一个系统变量。主要学习访问context对象中的数据。
六、循环、多股票策略
概括:会用list 和 for 即可。
七、获取典型常用数据
概括:调相关API
八、综合之前所学写一个策略
概括:前七章的总结,感觉直接照着这个模板写就好了。
九、策略评价与建立模拟
概括:主要评价指标有年化收益(越大越好),最大回撤率(越小越好)、交易次数(越多越好)、Alpha(代表与系统走势无关的收益,越大越好)与Beta(系统相关风险),夏普比率(所承担的单位风险所带来的收益,越大越好)。建立模拟要注意。
十、投资研究功能
概况:介绍了Jupyter Notebook的使用以及一些数据可视化。
十一、成长指路
概况:指出量化交易是需要自学以及自己钻研的,同时由于和利益直接挂钩,因此也不适合分享。并推荐了如下四篇文章(见于https://joinquant.com/post/14094):
这四个公式是四大量化策略,相当于“hello world”了。
感觉量化交易是一个很容易上手,但很重实践的东西,恩,本质上就是炒股咯。