WSL安装ROCm,TensorFlow-ROCm,miniconda3,VSCode, Jupyter过程记录

花了几天时间研究了一下,做个记录,也给有同样需求的人借鉴,少踩点坑。

我的硬件配置:14600KF + RX 7900XTX

其他AMD显卡可以在AMD网上查找支持列表

首先是参考AMD网站上的文章

WSL How to guide - Use ROCm on Radeon GPUs — Use ROCm on Radeon GPUs

里面有安装的详细步骤,但是其中有些信息并不准确

我这次安装成功的ROCm版本是6.3.2,Ubuntu版本是24.04,python版本是3.12.3,Tensorflow版本是2.17.0

以下显卡驱动
Radeon™ Software for Windows Version AMD Software: Adrenalin Edition™ 24.12.1 for WSL2
还有一个HIP SDK不确定是不是必要的,反正我是装了

1. 安装WSL,参考微软网站信息即可

2. 在WSL下安装Ubuntu,同样参考微软网站

3. 安装amdgpu-install

安装命令:

sudo apt update
wget https://repo.radeon.com/amdgpu-install/6.3.2/ubuntu/noble/amdgpu-install_6.3.60302-1_all.deb
sudo apt install ./amdgpu-install_6.3.60302-1_all.deb

'https://repo.radeon.com'这个网址列出了所有版本的ROCm,和各种安装包,查阅以后发现最新的ROCm版本是6.3.3,不过这个版本还没有支持WSL,在'amdgpu/6.3.3/ubuntu/pool/main/'里面缺少hsa-runtime-rocr4wsl-amdgpu,而在6.3.2的路径里有这个库,以后ROCm更新的时候可以去检查这个文件夹来确定是否能安装在WSL中

4. 接下来安装ROCm

amdgpu-install -y --usecase=wsl,rocm --no-dkms

5. 检查安装结果

rocminfo

这两步可参考AMD网站上的说明,安装成功后运行rocminfo会返回Agent 2的部分,包含显卡信息的内容

到此,ROCm就安装好了

接下来是安装TensorFlow

AMD网站上的关于Ubuntu版本,Keras版本这部分信息是不准确的,具体安装过程如下

6. 先安装miniconda3

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sudo chmod +x Miniconda3-latest-Linux-x86_64.sh
./Miniconda3-latest-Linux-x86_64.sh

7. 需要增加一个路径,修改~/.bashrc文件(/home/用户名/.bashrc),增加一行

export PATH=$PATH:/home/用户名/miniconda3/bin

此处“用户名”按实际替换,安装路径也是一样

然后运行

source ~/.bashrc

8. 初始化conda

conda init

创建环境

conda create -n rocm python=3.12.3

激活环境

conda activate rocm

9. 在创建的环境里安装TensorFlow ROCm

pip3 install https://repo.radeon.com/rocm/manylinux/rocm-rel-6.3.2/tensorflow_rocm-2.17.0-cp312-cp312-manylinux_2_28_x86_64.whl

这里就完成了TensorFlow的安装

以上部分理论上不应有报错,可能需要时不时关掉WSL并重开

10. 安装VSCode

默认windows已经安装好VSCode了,并安装了WSL Extension,WSL里只需要在终端输入 code . 就能启动安装VS Code Server,完成以后会在windows里打开VSCode,并打开WSL里面的文件夹

11. 安装Jupyter

这时候Extension就会分成Local和WSL,在WSL那部分里安装插件就可以了

最后记录一个import tensorflow as tf的错误和解决方法

如何解决conda使用中`GLIBCXX_3.4.29‘ not found的问题

在~/.bashrc里增加路径
export LD_LIBRARY_PATH="/home/用户名/.conda/envs/rocm/lib"

然后运行 source ~/.bashrc

用户名和环境名按实际替换,conda安装路径也一样

`GLIBCXX_3.4.32‘ not found的问题

更新conda环境中的libstdc++.so.6

conda install -c conda-forge libstdcxx-ng

就这些了,有空补一些截图和更详细的说明

ps: 不要使用AMD网站上的测试代码检验GPU,那段MNIST的训练代码在显卡上跑的比在CPU上还慢。可以使用cifar100的代码跑一下训练。
 


                
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值