Windows WSL2中使用 AMD 显卡的 GPU (ROCm) 加速运行 PyTorch 大模型

环境准备

  • Windows 11 WSL2 (Ubuntu 22.04.5)
  • AMD 显卡驱动 24.6.1及以上版本(本文以7900XTX为案例)
  • 科学上网(自行研究)

首先是根据 AMD官网进行安装ROCm

需要注意的是这里只能安装该版本的 amdgpu-install

sudo apt update
wget https://repo.radeon.com/amdgpu-install/6.2.3/ubuntu/jammy/amdgpu-install_6.2.60203-1_all.deb
sudo apt install ./amdgpu-install_6.2.60203-1_all.deb

进行ROCm安装, 如果上面安装的不是这个版本的amdgpu-install,这里则会安装ROCm失败

amdgpu-install -y --usecase=wsl,rocm --no-dkms

检测是否安装成功

#一般显示显卡的信息则是安装成功,如下图
rocminfo

在这里插入图片描述

安装PyTorch

接下来安装适合ROCm的 PyTorch

#安装python
sudo apt install python3-pip -y
pip3 install 
<think>嗯,用户想知道WSL2能不能跑GPU深度学习。我先回忆一下WSL2是什么,它和WSL1的区别主要在系统调用和内核上。WSL2使用完整的Linux内核,这样对硬件支持应该更好。然后,GPU支持方面,微软和NVIDIA合作,记得有官方文档提到过支持CUDA。需要确认一下支持的版本,比如Windows版本、驱动版本,还有WSL2的CUDA Toolkit版本。 接下来要考虑用户的环境,比如是否使用NVIDIA显卡,因为AMD可能支持不同。然后安装步骤大概需要安装预览版的Windows Insider版本,然后在WSL2里安装驱动和CUDA工具包。可能还需要配置环境变量,安装cuDNN之类的库。可能用户会遇到的问题,比如驱动不兼容,或者WSL2的版本问题,需要提醒用户检查这些。 另外,性能方面,虽然WSL2支持GPU加速,但和原生Linux相比可能会有性能损耗,需要提及。还有TensorFlow、PyTorch这些框架是否支持在WSL2运行,可能需要特定的版本或者配置。最后,用户如果是刚接触的话,可能需要一些具体的步骤指导,比如链接到官方文档或者教程。确保回答结构清晰,分步骤说明可行性和注意事项,以及可能的限制。</think>当然可以!WSL2Windows Subsystem for Linux 2)现已支持GPU加速的深度学习任务。以下是具体实现条件和步骤说明: --- ### **一、可行性条件** 1. **硬件要求** - NVIDIA显卡(需支持CUDA,例如RTX 20/30/40系列或更高) - Windows 10版本 **2004及以上** 或 Windows 11 - 已安装最新版 **NVIDIA显卡驱动**(需包含WSL2支持) 2. **软件配置** - 启用WSL2并安装Linux发行版(如Ubuntu 20.04/22.04) - 安装 **NVIDIA CUDA Toolkit for WSL2**(推荐版本≥11.7) - 深度学习框架(如PyTorch/TensorFlow)需适配WSL2环境 --- ### **二、具体步骤** #### **1. 配置Windows环境** - 开启WSL2功能: ```powershell wsl --install wsl --set-default-version 2 ``` - 在Windows中安装 **NVIDIA驱动**:从官网下载并选择 **“Windows Driver for WSL”** 版本。 #### **2. 配置Linux环境** - 在WSL2中安装CUDA Toolkit: ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600 sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/3bf863cc.pub sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/ /" sudo apt-get update sudo apt-get -y install cuda ``` - 验证CUDA安装: ```bash nvcc --version # 应输出CUDA版本 nvidia-smi # 查看GPU状态 ``` #### **3. 安装深度学习框架** - **PyTorch**(示例): ```bash pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118 ``` - **TensorFlow**(示例): ```bash pip install tensorflow[and-cuda] ``` --- ### **三、性能与限制** - **性能对比**:WSL2 GPU加速性能接近原生Linux,但存在约 **5-10%** 的损耗(因I/O虚拟化开销)。 - **限制**: - 仅支持NVIDIA显卡AMD ROCm暂未官方支持WSL2)。 - 需使用 **Windows Insider预览版** 或最新稳定版系统。 --- ### **四、验证示例代码** 在Python中运行以下代码测试GPU是否生效: ```python import torch print(torch.cuda.is_available()) # 应输出True ``` --- ### **五、参考链接** - [NVIDIA官方WSL2指南](https://developer.nvidia.com/cuda/wsl) - [微软WSL2文档](https://learn.microsoft.com/zh-cn/windows/wsl/install) 通过以上配置,即可在WSL2中流畅运行PyTorch、TensorFlow等深度学习框架的GPU加速任务。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值