英悟的博客

不是英语的博客

【图论】最小生成树

最小生成树的概念

目的: 对于n个节点以及m条带有权重边的连通图, 切掉若干条边,使得剩余的边的权重和最小并且该图是一颗树(即含有n个节点以及n-1条边的连通子图)

为什么需要最小生成树

如果把边的权重看成是连接两个节点所需要的cost,那么最小生成树就可以使得原图的各个节点仍旧保持互通的状态,并且cost最小。其本质是一个最优化的问题。

Kruskal算法的基本思想

核心本质是逆向思维。你不是让我去掉某些边吗?那么我索性把所有边都去掉,然后从权重小的边开始一条一条加回来。每加回一条边,就会使两个节点连通,如果这两个节点本身就是连通的,那么这一条边就不要加回来,如果这两个节点本身是不连通的,那么这一条边就需要加回来。最后加回来的边数到达节点数减1的时候,就是一颗最小生成数了。

伪代码如下:

node_list = [a,b,c,d] // 所有节点的数组
tree_list = [{a}, {b}, {c}, {d}] // 所有独立的树的数组,由于一开始去掉了所有的边,所以a,b,c,d四个节点都变成孤立的单节点树,最终目的是通过加边,使得tree_list逐渐变为[{a, b}, {c}, {d}] => [{a, b}, {c, d}] => [{a, b, c, d}]。
edge_list = [e1, e2, e3, e4, e5] // 所有边的容器
selected_edge_list = [] // 挑选的边的结果数组,一开始为空

while length(selected_edge_list) < length(node_list) - 1: // 最终需要挑选出n-1条边,因为一棵树是n-1条边
    // 每次从边的容器中pop出一个最小的权重的边
    min_edge = get_and_pop_min_edge(edge_list)
    // 检查min_edge的两端节点在tree_list中是否处于两颗树中,如果是的话,就可以连通这两颗树
    if can_merge_tree(tree_list, min_edge) is True:
        tree_list = merge_tree(tree_list, min_edge)
        selected_edge_list.append(min_edge)
return selected_edge_list

Prim算法的基本思想

Prim的算法的本质是加点法。先随机挑选一个点作为最小生成树A中的起始点,其他点作为候选点。每次从候选点集合里面选择一个到达树A的距离最短的点并把这个点和这个点到树A的一边加入到最小生成树A中去(即每次加一点一边)。直到最小生成树A包含了所有的点。

这个算法比较容易理解,伪代码略。

注意

很明显,Kruskal和Prim算法都是通过贪心的寻找局部最优来解题。但是你要记住局部最优的方案并不一定是全局最优的。当然在最小生成树的问题上,Kruskal和Prim算法都已经被证明了这样的算法是可以全局最优的。

时间复杂度

Prim算法的时间复杂度为O(n2),与网中的边数无关,适合于稠密图(即边多点少);而Kruskal的算法复杂度为O(elog e),与网中的边数有关,适合于稀疏图(即点多边少)。

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/leon_wzm/article/details/79961784
个人分类: python
上一篇go语言来解释闭包的概念
下一篇【翻译】多租户SaaS的数据库设计模式
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭