深度学习500问——Chapter06: 循环神经网络(RNN)(2)

本文详细比较了CNN和RNN在结构、应用和训练上的差异,探讨了RNN训练中Loss波动的原因,以及如何通过选择更好的激活函数(如ReLU)、使用BN层和LSTM结构来解决梯度消失问题。
摘要由CSDN通过智能技术生成

文章目录


6.4 CNN和RNN的区别

类别特点描述
相同点

1、传统神经网络的扩展

2、前向计算产生结果,反向计算模型更新

3、每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接

不同点

1、CNN空间扩展,神经元与特征卷积;RNN时间扩展,神经元与多个时间输出计算

2、RNN可以用于描述时间上连续状态的输出,有记忆功能,CNN用于静态输出

6.5 RNNs与FNNs有什么区别

1. 不同于传统的前馈神经网络(FNNs),RNNs引入了定向循环,能够处理输入之间前后关联问题。

2. RNNs可以记忆之前步骤的训练信息。

定向循环结构如下图所示:

6.6 RNNs训练和传统ANN训练异同点

相同点:

  • RNNs与传统ANN都使用BP(Back Propagation)误差反向传播算法。

不同点:

  • RNNs网络参数W,U,V是共享的(具体在本章6.2节中已介绍),而传统神经网络各层参数间没有直接联系。
  • 对于RNNs,在使用梯度下降算法中,每一步的输出不仅依赖当前步的网络,还依赖于之前若干步的网络状态。

6.7 为什么RNN训练的时候Loss波动很大

由于RNN特有的memory会影响后期其他的RNN的特点,梯度时大时小,learning rate没法个性化的调整,导致RNN在train的过程中,Loss会震荡起伏,为理论解决RNN的这个问题,在训练的时候,可以设置临界值,当梯度大于某个临界值,直接截断,用这个临界值作为梯度的大小,防止大幅震荡。

6.8 标准RNN前向输出流程

x表示输入,h是隐层单元,o是输出,L为损失函数,y为训练集标签。t表示t时刻的状态,V,U,W是权值,同一类型的连接权值相同。以下图为例进行说明标准RNN的前向传播算法:

对于t时刻,h^{(t)}=\phi(Ux^{(t)}+Wh^{(t-1)}+b),其中\phi()为激活函数,一般会选择tanh函数,b为偏置。

t时刻的输出为:o^{(t)}=Vh^{(t)}+c

模型的预测输出为:\widehat{y}^{(t)}=\sigma(o^{(t)})

其中,\sigma为激活函数,通常RNN用于分类,故这里一般用softmax函数。

6.9 BPTT算法推导

BPTT(back-propagation through time)算法是常用的训练RNN的方法,其本质还是BP算法,只不过RNN处理时间序列数据,所以要基于时间反向传播,故叫随时间反向传播。BPTT的中心思想进而BP算法相同,沿着需要优化的参数的负梯度方向不断寻找更优的点直至收敛。

需要寻优的参数有三个,分别是U、V、W。与BP算法不同的是,其中W和U两个参数的寻优过程需要追溯之前的历史数据,参数V相对简单只需关注目前,那么我们就先来求解参数V的偏导数。

\frac{\partial L^{(t)}}{\partial V}=\frac{\partial L^{(t)}}{\partial o^{(t)}}\cdot \frac{\partial o^{(t)}}{\partial V}

RNN的损失也是会随着时间累加的,所以不能只求t时刻的偏导。

L=\sum_{t=1}^{n}L^{(t)}

\frac{\partial L}{\partial V}=\sum ^n_{t=1}\frac{\partial L^{(t)}}{\partial o^{(t)}}\cdot \frac{\partial o^{(t)}}{\partial V}

W和U的偏导的求解由于需要涉及历史数据,其偏导求起来相当复杂。为了简化推导过程,我们假设只有三个时刻,那么在第三个时刻LWLU的偏导数分别为:

\frac{\partial L^{(3)}}{\partial W}=\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial W}+\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}}\frac{\partial h^{(2)}}{\partial W}+\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}}\frac{\partial h^{(2)}}{\partial h^{(1)}}\frac{\partial h^{(1)}}{\partial W}

\frac{\partial L^{(3)}}{\partial U}=\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial U}+\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}}\frac{\partial h^{(2)}}{\partial U}+\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}}\frac{\partial h^{(2)}}{\partial h^{(1)}}\frac{\partial h^{(1)}}{\partial U}

可以观察到,在某个时刻的对W或是U的偏导数,需要追溯这个时刻之前所有时刻的信息。根据上面两个式子得出Lt时刻对WU偏导数的通式:

\frac{\partial L^{(t)}}{\partial W}=\sum_{k=0}^{t}\frac{\partial L^{(t)}}{\partial o^{(t)}}\frac{\partial o^{(t)}}{\partial h^{(t)}}(\prod_{j=k+1}^{t}\frac{\partial h^{(j)}}{\partial h^{(j-1)}})\frac{\partial h^{(k)}}{\partial W}

\frac{\partial L^{(t)}}{\partial U}=\sum_{k=0}^{t}\frac{\partial L^{(t)}}{\partial o^{(t)}}\frac{\partial o^{(t)}}{\partial h^{(t)}}(\prod_{j=k+1}^{t}\frac{\partial h^{(j)}}{\partial h^{(j-1)}})\frac{\partial h^{(k)}}{\partial U}

整体的偏导公式就是将其按时刻再一一加起来。

6.9 RNN中为什么会出现梯度消失

首先来看tanh函数的函数及导数图如下所示:

sigmoid函数的函数及导数图如下所示:

从上图观察可知,sigmoid函数的导数范围是(0,0.25],tanh函数的导数范围是(0,1],它们的导数最大都不大于1。

基于6.8章节中公式的推导,RNN的激活函数是嵌套在里面的,如果选择激活函数为tanh或sigmoid,把激活函数放进去,拿出中间累乘的那部分可得:

\prod_{j=k+1}^{t}{\frac{\partial{h^{j}}}{\partial{h^{j-1}}}} = \prod_{j=k+1}^{t}{tanh^{'}}\cdot W_{s}

\prod_{j=k+1}^{t}{\frac{\partial{h^{j}}}{\partial{h^{j-1}}}} = \prod_{j=k+1}^{t}{sigmoid^{'}}\cdot W_{s}

梯度消失现象:

基于上式,会发现累乘会导致激活函数导数的累乘,如果取tanh或sigmoid函数作为激活函数的话,那么必然是一堆小数在做乘法,结果就是越乘越小。随着时间序列的不断深入,小数的累乘就会导致梯度越来越小直到接近于0,这就是“梯度消失”现象。

实际使用中,会优先选择tanh函数,原因是tanh函数相对于sigmoid函数来说梯度较大,收敛速度更快且引起梯度消失更慢。

6.10 如何解决RNN中的梯度消失问题

上节描述的梯度消失是在无限的利用历史数据而造成,但是RNN的特点本来就是能利用历史数据获取更多的可利用信息,解决RNN中的梯度消失方法主要有:

  1. 选取更好的激活函数,如ReLU激活函数。ReLU函数的左侧导数为0,右侧导数恒为1,这就避免了“梯度消失”的发生。但恒为1的导数容易导致“梯度爆炸”,但设定合适的阈值可以解决这个问题。
  2. 加入BN层,其优点包括可加速收敛、控制过拟合,可以少用或不用Dropout和正则、降低网络对初始化权重不敏感,且能允许使用较大的学习率等。
  3. 改变传播结构,LSTM结构可以有效解决这个问题。

  • 17
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOYCE_Leo16

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值