Matrix Power Series(poj3233快速幂+矩阵二分幂+分治)

题意:给定一个n*n的矩阵和一个整数k,计算 S = A +A^2 +A^3 + .....+ A^k

思路:不能暴力,会超时的所以我们要想一个办法化简,对于原式可以提取公因式

 S = A +A^2 +A^3 + .....+ A^k/2 + A^k/2 * (A +A^2 +A^3 + .....+ A^k/2)

这样我们就可以只算A到A^k/2,同理这之间也可以用刚才的方法不停地二分知道只剩1个

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
struct Matrix
{
    int row[32][32];
};
Matrix unit;
int n,k,m;
Matrix Matrix_add(Matrix a,Matrix b)
{
    Matrix c;
    for (int i=0; i<n; i++)
      for (int j=0; j<n; j++)
      {
          c.row[i][j]=a.row[i][j]+b.row[i][j];
          c.row[i][j]%=m;
      }
    return c;
}

Matrix Matrix_Mul(Matrix a,Matrix b)
{
    Matrix c;
    for (int i=0; i<n; i++)
      for (int j=0; j<n; j++)
      {
          c.row[i][j]=0;
          for (k=0; k<n; k++)
              c.row[i][j]+=a.row[i][k]*b.row[k][j];
            c.row[i][j]%=m;

      }
    return c;
}

Matrix Matrix_mod(Matrix a,int k)
{
    Matrix sum = unit;
    Matrix A = a;
    while(k)
    {
        if(k&1)
        {
           k--;
           sum = Matrix_Mul(sum,A);

        }
        else
        {
            A = Matrix_Mul(A,A);
            k = k >> 1;
        }

    }
    return sum;
}
Matrix Matrix_sum(Matrix a,int k)
{
    if(k == 1)
        return a;
    else
    {
        Matrix sum,b,temp;
        sum = Matrix_sum(a,k/2);
        if(k % 2 == 1)
        {
            b = Matrix_mod(a,k/2+1);
            sum = Matrix_add(sum,Matrix_Mul(b,sum));
            sum = Matrix_add(sum,b);
        }
        else
        {
            b = Matrix_mod(a,k/2);
            sum = Matrix_add(sum,Matrix_Mul(b,sum));
        }
        return sum;
    }
}
int main()
{
    while(scanf("%d%d%d",&n,&k,&m) != EOF)
    {
        Matrix a;
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
            {
                scanf("%d",&a.row[i][j]);
                a.row[i][j] =  a.row[i][j] % m;//事先处理一下不处理时间会慢很多了
                unit.row[i][j] = (i == j);
            }
        }
        Matrix sum = Matrix_sum(a,k);
        for(int i = 0; i < n; i++)
        {
            printf("%d",sum.row[i][0]);
            for(int j = 1; j < n; j++)
            {
                printf(" %d",sum.row[i][j]%m);
            }
            printf("\n");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值