Raising Modulo Numbers(poj1995快速模运算)

题意:(A1B1+A2B2+ ... +AHBH)mod M.

思路:快速幂算出每一个,然后加在一起,这里快速幂最好不要用递归,容易爆,还是二进制思想吧

A^x = A^(bn*2^n + bn-1*2^n-1......+b0)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;

typedef long long int64;

int64 quick_mod(int64 a,int64 n,int64 m)
{
   int64 A = a;
   int64 sum = 1;
   while(n)
   {
       if(n&1)
         sum = (sum * A) % m;
       A = A * A % m;
       n  = n >> 1;
   }
   return sum;
}
int main()
{
    int64 t;
    scanf("%I64d",&t);
    while(t--)
    {
        int64 m,H,A,B;
        scanf("%I64d",&m);
        scanf("%I64d",&H);
        int64 sum = 0;
        for(int64 i = 0; i < H; i++)
        {
            scanf("%I64d%I64d",&A,&B);
            sum = ( sum + quick_mod(A,B,m) ) % m;
        }
        printf("%I64d\n",sum);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值