ChatGPT生成式算法及发展历程

引言

GPT(Generative Pre-Trained Transformer)系列是OpenAI开发的一系列以Transformer[2]为基础的生成式预训练模型,这个系列目前包括文本预训练模型GPT-1[3],GPT-2[4],GPT-3[5],InstructGPT[7]、ChatGPT[8](这两个工作可以看作GPT-3.5的延伸),图像预训练iGPT[6],GPT-4[1]。

生成式任务主流的五种算法

​图1 不同生成模型概览

生成任务的核心思想就是保证生成的样本的分布要与训练数据的分布接近,这样生成出来的数据和原有的数据就会十分相似,可以以假乱真的地步。当今深度学习领域最主流的模型包括自回归模型Autoregressive Model (AR)、生成对抗网络Generative Adversarial Network (GAN)、标准化流模型Normalizing Flow (Flow)、自编码器Auto-Encoder (AE)与变分自编码器Variational Auto-Encoder (VAE)、去噪扩散模型Denoising Diffusion Probablistic Model (Diffusion)等等。如图1所示 ,展示了不同模型的处理流程。为了避免出现大量的数学公式,这里只是形式化得说明不同生成框架的基本处理流程,如果大家对算法细节感兴趣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

越哥聊AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值