生信多组学整合工具的比较研究

今天给大家要分享是昆士兰科技大学Sathyanarayanan在Briefings in Bioinformatics(IF: 8.990)杂志上发表的论文。作者比较了九种不同的多组学数据整合工具,对多阶段整合工具从基因、功能和通路水平进行评估,对元维度整合工具则从样本分类性能进行评估。此外还研究了数据表示、样本大小、信号和噪声等因素对整合工具的影响。

 

 

0 (1).png

 

 

 

研究背景

 

细胞基因组成的改变可能导致癌症的发生,尽管有些改变机制很容易被理解,但对于肿瘤发生的研究仍然面临两大挑战。第一个挑战是鉴定出驱动疾病进展的基因和畸变,第二个挑战是对样本或患者进行分层。

多组学数据整合允许对多种组学数据类型进行联合分析,以提供生物系统的全局视图和不同数据集层之间相互作用性质的见解。而通常采用的多组学整合策略大致可分为两类:多阶段整合方法和元维度整合方法。

 

文章剩余内容<<<<<

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值