python数据结构课程设计,迷宫问题求解

问题描述:

给定一个迷宫地图,包含空地、墙壁、起点和终点。迷宫地图由二维数组表示,数组的每个元素代表一个迷宫的单元格。

要求设计一个程序,通过遍历迷宫地图,找出一条从起点到终点的路径。

迷宫地图的规则如下:

  • 数组的每个元素值为0表示空地,元素值为1表示墙壁;
  • 迷宫地图的起点位置用元素值为2表示;
  • 迷宫地图的终点位置用元素值为3表示;
  • 路径只能沿着空地移动,不能穿过墙壁;
  • 路径只能沿上、下、左、右四个方向移动,不能斜向移动;

输入:

迷宫地图的二维数组,起点和终点的坐标。

输出:

从起点到终点的路径。

算法思路:

可以使用深度优先搜索(DFS)算法来解决迷宫问题。具体步骤如下:

  1. 创建一个栈,将起点的坐标压入栈中;
  2. 创建一个二维数组visited,用于记录已经访问过的单元格,初始值全为False;
  3. 创建一个空路径path,用于保存当前的路径;
  4. 进入循环,直到栈为空:
    • 弹出栈顶元素,将其标记为已访问;
    • 如果当前单元格为终点,则返回路径path;
    • 否则,将当前单元格的坐标加入路径path;
    • 检查当前单元格的四个相邻单元格,如果相邻单元格为可访问的空地且未访问过,则将其坐标压入栈中;
  5. 如果栈为空,且终点还未找到,则返回空路径。

实现代码如下(使用Python语言):

def dfs(maze, start, end):
    stack = []  # 创建栈
    stack.append(start)  # 将起点压入栈中
    visited = [[False] * len(maze[0]) for _ in range(len(maze))]  # 创建visited数组,记录已访问过的单元格
    path = []  # 创建路径数组
    while stack:
        curr = stack.pop()  # 弹出栈顶元素
        x, y = curr
        visited[x][y] = True  # 标记当前单元格为已访问
        if curr == end:  # 如果当前单元格为终点
            path.append(curr)  # 将终点加入路径
            return path
        path.append(curr)  # 将当前单元格加入路径
        # 检查上、下、左、右四个相邻单元格
        neighbors = [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)]
        for neighbor in neighbors:
            nx, ny = neighbor
            # 如果相邻单元格为可访问的空地且未访问过
            if 0 <= nx < len(maze) and 0 <= ny < len(maze[0]) and maze[nx][ny] == 0 and not visited[nx][ny]:
                stack.append((nx, ny))  # 将相邻单元格的坐标压入栈中
    return []  # 如果栈为空,且终点还未找到,则返回空路径

# 测试代码
maze = [[0, 1, 1, 1, 1, 1],
        [0, 0, 1, 0, 0, 1],
        [1, 0, 0, 0, 1, 0],
        [0, 1, 1, 0, 1, 1],
        [0, 1, 0, 0, 0, 0],
        [0, 2, 0, 3, 1, 0]]

start = (5, 1)
end = (3, 3)

path = dfs(maze, start, end)
print("Path: ", path)

运行以上代码,将输出从起点到终点的路径。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值