题目
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 1:
88
题目大意
给你一个插入序列,将其调整为平衡二叉树后输出根节点
题解
首先调整平衡二叉树有四种方式:
- RR单旋:破坏结点在被破坏者的右子树的右边
- RL旋转:破坏结点在被破坏者的右子树的左边
- LL单旋:破坏结点在被破坏者的左子树的左边
- LR旋转:破坏结点在被破坏者的左子树的右边
1. RR单旋
AVLTree RRFix(AVLTree Tree)/*右右单旋*/
{
AVLTree T = Tree->Right;
Tree->Right = T->Left;
T->Left = Tree;
return T;
}
2. RL旋转
AVLTree RLFix(AVLTree Tree)/*右左旋转*/
{
AVLTree T = Tree->Right->Left;
Tree->Right->Left = T->Right;
T->Right = Tree->Right;
Tree->Right = T->Left;
T->Left = Tree;
return T;
}