浙大数据结构pta——04-树5 Root of AVL Tree (25分)

这是一篇关于AVL树的博客,详细解释了如何通过RR、RL、LL和LR四种旋转方式保持树的平衡,并给出了在一系列插入操作后如何找到平衡二叉搜索树的根节点的方法。
摘要由CSDN通过智能技术生成

题目

An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.在这里插入图片描述Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Output 1:

70

Sample Input 2:

7
88 70 61 96 120 90 65

Sample Output 1:

88

题目大意

给你一个插入序列,将其调整为平衡二叉树后输出根节点

题解

首先调整平衡二叉树有四种方式:

  1. RR单旋:破坏结点在被破坏者的右子树的右边
  2. RL旋转:破坏结点在被破坏者的右子树的左边
  3. LL单旋:破坏结点在被破坏者的左子树的左边
  4. LR旋转:破坏结点在被破坏者的左子树的右边

1. RR单旋

在这里插入图片描述在这里插入图片描述

AVLTree RRFix(AVLTree Tree)/*右右单旋*/
{
   
    AVLTree T = Tree->Right;
    Tree->Right = T->Left;
    T->Left = Tree;
    return T;
}

2. RL旋转

在这里插入图片描述

AVLTree RLFix(AVLTree Tree)/*右左旋转*/
{
   
    AVLTree T = Tree->Right->Left;
    Tree->Right->Left = T->Right;
    T->Right = Tree->Right;
    Tree->Right = T->Left;
    T->Left = Tree;
    return T;
}

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值