深度学习&遥感
文章平均质量分 84
本专栏聚焦深度学习与遥感技术的交叉领域,深入剖析卷积神经网络、Transformer 等前沿算法在遥感影像分类、目标检测中的应用。通过丰富的实践案例,呈现从数据处理到模型优化的全流程。同时追踪行业动态,探讨二者在智能交通、精准农业等领域的融合趋势,为科研工作者、技术爱好者及从业者提供学习思路与创新方
遥感AI实战
公众号:遥感AI实战,211博士
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
深度学习入门实战教程|案例③-6:CNN 深度解释与可视化
本文探讨高光谱分类中CNN模型的可解释性问题。通过类激活图(CAM)和通道注意力可视化方法,揭示了CNN内部工作机制。实验在KSC数据集上进行,采用1DCNN模型,并展示多种可视化技术:混淆矩阵分析错误分类模式、整图预测验证空间泛化能力、卷积核谱形可视化展示特征提取机制、通道重要性评估识别关键特征维度。这些方法使CNN从"黑箱"转变为可解释模型,帮助理解其决策依据。实验代码完整展示了数据处理、模型构建、训练及可视化过程,为高光谱分类提供了一套系统的可解释性分析方案。原创 2025-09-07 20:33:52 · 431 阅读 · 0 评论 -
深度学习入门实战教程|案例③-5:进阶卷积(Dilated / Depthwise Separable)在 KSC 的应用
研究对比了空洞卷积和深度可分离卷积在1D高光谱分类中的效果。空洞卷积通过间隔采样扩大感受野,深度可分离卷积将标准卷积拆分为逐通道和点卷积,显著降低参数量。实验在KSC数据集上对比了三种1D-CNN模型:标准卷积、空洞卷积和深度可分离卷积。结果表明,空洞卷积在AA/Kappa指标上更稳定,深度可分离卷积计算效率更高,但基础卷积在特定情况下仍可能表现最佳。研究建议将这些结构作为可选基线进行对比,并提出了结合多尺度特征与轻量化等未来方向。原创 2025-09-07 20:32:56 · 365 阅读 · 0 评论 -
深度学习入门实战教程|案例③-4:经典 CNN 架构篇(LeNet / VGG / ResNet)
本文对比了三种经典CNN架构(LeNet、VGG、ResNet)在高光谱分类任务中的表现。通过KSC数据集实验,分析了各网络特点:LeNet结构简单但表达力有限;VGG通过3×3卷积堆叠实现深层特征提取;ResNet引入残差连接解决梯度消失问题。实验结果显示,ResNet在测试准确率和Kappa系数上表现最优。文章提供了完整的PyTorch实现代码,并强调理解这些经典架构对后续学习更复杂网络的重要性。三种架构的对比直观展示了CNN从浅层到深层的发展脉络及其在遥感图像处理中的应用价值。原创 2025-09-06 20:05:40 · 486 阅读 · 0 评论 -
深度学习入门实战教程|案例③-3:KSC 整图全像素分类 + CNN 结构与参数分析
本文提出了一种基于1D CNN的高光谱图像全像素分类方法。首先对KSC数据集进行预处理,仅使用标注像素训练StandardScaler和PCA以避免数据泄露。模型采用1D CNN处理光谱序列,通过训练和测试评估(OA/AA/Kappa+混淆矩阵)后,对整幅图像进行全像素推理。实验还分析了模型结构参数,并可视化卷积核、特征图和谱段显著性,以理解模型决策机制。该方法简单有效,可作为遥感深度学习的基线方案,后续可通过调整PCA维度、增加网络层数或引入空间上下文信息来提升性能。原创 2025-09-06 20:04:44 · 320 阅读 · 0 评论 -
深度学习入门实战教程|案例③-2:CNN 在 KSC 上的整图全像素预测
本文介绍了使用1DCNN进行高光谱影像分类的完整流程。以KSC高光谱数据为例,采用标准化+PCA预处理(仅训练集拟合避免泄露),构建1DCNN模型在光谱维度提取特征。实验遵循ML传统范式:分层抽样训练/测试集、测试评估(OA/AA/Kappa+混淆矩阵)和整图推理。1DCNN参数少、收敛快,适合作为光谱分类基线模型。结果显示1DCNN优于浅层模型,全像素预测能覆盖未标注区域。该方法结构清晰,是从传统ML过渡到深度学习的理想基线,后续可引入空间信息或更深网络增强。提供完整可执行代码,适合遥感深度学习入门实践。原创 2025-09-03 10:24:32 · 943 阅读 · 0 评论 -
深度学习入门实战教程|案例③补充:PyTorch 构建卷积神经网络全流程
摘要:本文介绍了使用PyTorch构建卷积神经网络(CNN)的完整流程,包括CNN核心概念(局部感受野、权值共享、平移不变性)、PyTorch实现模块(Conv2d、ReLU等)、MNIST数据集上的实践代码(模型搭建、训练循环、性能评估),以及可视化训练曲线和混淆矩阵的方法。文章还提供了可运行的完整代码,并预告了后续将CNN应用于遥感影像分类的计划。原创 2025-09-03 10:22:44 · 934 阅读 · 0 评论 -
遥感&深度学习入门实战教程|案例③-1:卷积神经网络的基本原理
卷积神经网络(CNN)通过局部连接和参数共享解决了全连接网络的参数量大和空间结构利用不足的问题。核心组件包括:卷积层提取局部特征,池化层进行下采样,ReLU激活引入非线性,全连接层整合输出。文章通过numpy实现卷积核边缘检测的演示,展示了CNN如何高效提取图像特征。相比传统网络,CNN具有参数少、保持空间关系、平移不变性等优势,是图像处理任务的基础架构。原创 2025-09-02 13:47:39 · 373 阅读 · 0 评论 -
遥感&深度学习入门实战教程|补充篇②:激活函数全景图
本文介绍了深度学习中的关键组件——激活函数。激活函数赋予神经网络非线性建模能力,使多层网络能够逼近任意复杂函数。文章分析了Sigmoid(存在梯度消失问题)、Tanh(改进版Sigmoid)、ReLU(当前主流选择)、Leaky ReLU(解决神经元死亡问题)和GELU(Transformer常用)五种常见激活函数的特性,并提供了可视化对比代码。原创 2025-09-02 13:45:47 · 686 阅读 · 0 评论 -
遥感&深度学习入门实战教程|补充篇①:PyTorch 入门必备
本文介绍了PyTorch深度学习框架的核心概念和实战应用。主要内容包括:1)PyTorch核心组件:Tensor、Autograd、nn.Module、Optimizer等;2)通过一个完整的线性回归示例(y=2x+1)演示数据准备、模型构建、训练流程和结果可视化;3)关键知识点总结:Tensor与NumPy互转、自动求导、模型结构定义、训练/验证模式切换等;4)模型训练的标准流程"套路清单"。该教程适合快速入门PyTorch,掌握基础后即可扩展到更复杂的深度学习和遥感任务应用。原创 2025-09-01 23:38:46 · 1093 阅读 · 0 评论 -
遥感&深度学习入门实战教程|案例②:多层感知机(MLP)
本文介绍了多层感知机(MLP)的核心原理和应用。针对感知机只能处理线性问题的局限,MLP通过隐藏层和非线性激活函数(如ReLU)实现了非线性分类能力。文章展示了两个案例:1)使用PyTorch实现MLP解决异或(XOR)分类问题,成功学习非线性边界;2)在KSC高光谱数据上应用MLP分类器,结果表明其性能优于感知机但弱于CNN等更高级网络。MLP通过增加网络深度和反向传播机制,成为处理复杂模式的基础神经网络模型,为后续CNN、RNN等网络奠定基础。原创 2025-09-01 23:37:38 · 501 阅读 · 0 评论 -
深度学习与遥感入门(七)|CNN vs CNN+形态学属性(MP):特征工程到底值不值?
前面的内容我们介绍了很多特征挖掘的内容,那么今天主要通过实验证明特征挖掘到底有没有用。在遥感图像分类任务中,模型性能的提升往往离不开高质量的特征。当深度学习遇上传统特征工程,会碰撞出怎样的火花?今天我们就通过对比纯CNN模型与融合了形态学属性(Morphological Profiles, MP)的CNN模型,来探讨特征工程在遥感分类中的价值。原创 2025-08-13 21:11:40 · 1037 阅读 · 0 评论 -
深度学习与遥感入门(六)|轻量化 MobileNetV2 高光谱分类
本文提出了一种高光谱图像分类的严格无泄露预处理方法,重点解决PCA数据泄露问题。通过仅使用训练集像素拟合StandardScaler和PCA,并在全图预测中共享同一变换空间,确保评估结果可信。采用轻量化MobileNetV2的深度可分离卷积结构,实现显存友好的坐标批推理全图预测。实验表明,该方法在小样本和类分布差异大时能显著提升分类精度,相比传统整图PCA可带来0.1%-1%的OA提升,极端情况下可达数个百分点。原创 2025-08-12 20:33:14 · 1246 阅读 · 0 评论 -
深度学习与遥感入门(五)|GAT & 构图消融 + 分块全图预测:更稳更快的高光谱图分类(PyTorch Geometric 实战)
本系列文章探讨高光谱图像分类方法,通过5篇论文逐步优化模型性能。第1篇介绍CNN基础流程;第2篇提出HybridNet(CNN+Transformer)增强全局感受野;第3篇实现基于光谱KNN的图卷积分类;第4篇通过空间-光谱联合构图提升稳定性;最新第5篇在GCN基础上加入GAT注意力机制,并实现分块全图预测以解决显存不足问题。文章重点解决构图选择、GAT与GCN比较、全图预测显存消耗三大问题,提出构图消融实验、模型双模切换、分块局部构图等技术方案。原创 2025-08-11 18:10:48 · 1260 阅读 · 0 评论 -
用 t-SNE 把 KSC 高光谱“变成可转动的 3D 影像”——从零到会,逐段读懂代码并导出旋转 GIF
摘要 本文介绍了一种利用t-SNE 3D技术对KSC高光谱数据进行降维可视化的方法,适用于教学汇报和文章配图。原创 2025-08-11 18:07:09 · 826 阅读 · 0 评论 -
深度学习与遥感入门(四)|空间–光谱联合构图的 GCN:更稳更准的高光谱分类与全图预测(PyTorch Geometric)
本文提出了一种改进的高光谱图像分类方法,通过融合空间和光谱信息构建图结构,并引入边权重和自环机制来提升分类性能。具体改进包括:1)采用光谱KNN和空间KNN联合构图,通过RBF函数计算相似度作为边权重;2)加入自环稳定训练过程;3)实现早停机制和固定随机种子以提高可复现性。实验结果表明,该方法能够生成更稳定的全图分类结果,同时减少训练时间。文章提供了完整的可配置代码实现,包括数据预处理、图构建、模型训练和可视化等模块,方便读者复现和进一步研究。原创 2025-08-10 16:48:18 · 1171 阅读 · 0 评论 -
番外:高光谱特征工程可视化实战|假彩色、PCA、LBP 与光谱曲线(逐段讲解 + 可直接运行)
本文使用KSC高光谱数据展示四种常见可视化方法:假彩色合成、PCA主成分合成、LBP纹理分析和类别平均光谱曲线。首先加载数据并进行预处理,包括归一化和百分位拉伸。假彩色合成通过选择三个波段映射到RGB通道;PCA合成将前三主成分转换为彩色图像并显示方差解释率;LBP纹理分析分别在原始波段和PCA分量上计算局部二值模式纹理特征。文中提供了完整的Python实现代码和可视化效果图,并针对常见问题(如数据类型转换警告)提供了解决方案。这些可视化方法可帮助直观理解高光谱数据的空间分布、光谱特征和纹理信息。原创 2025-08-10 16:46:15 · 957 阅读 · 0 评论 -
深度学习与遥感入门(三)|基于PyTorch Geometric的GCN模型:图神经网络在高光谱图像分类与全图预测实战教程
本文介绍了如何利用图神经网络(GNN)处理高光谱图像(HSI)分类任务。通过将每个像素视为图节点,基于K近邻构建邻接关系,使用PyTorch Geometric实现了一个图卷积网络(GCN)。实验表明,GCN能有效融合光谱和空间信息,在像素级分类中取得良好效果,并支持全图预测与可视化。相比传统CNN,GNN能更自然地建模高光谱数据的图结构特征,为遥感影像分析提供了新思路。原创 2025-08-09 23:21:25 · 846 阅读 · 0 评论 -
深度学习与遥感入门(2.5)|三种 CNN 特征对比:高光谱图像分类中的光谱、空间与时空混合可视化
本文带你在 KSC 高光谱 数据上,快速对比三种常见 CNN 特征提取思路:1)Spectral-1D-CNN(光谱卷积),2)Spatial-2D-CNN(空间卷积),3)Hybrid-3D-CNN(空间+光谱混合卷积)。我们使用 PyTorch 实现,并用 t-SNE 将各自的“倒数第二层特征”降维可视化,直观看不同设计对类间分离度的影响;另附 2D-CNN 第一层特征图,帮助理解模型对纹理/边缘的响应。原创 2025-08-09 23:17:56 · 544 阅读 · 0 评论 -
深度学习与遥感入门(二)|基于PyTorch的HybridNet模型:CNN+Transformer结合的高光谱图像分类实战教程
本文提出了一种结合CNN和Transformer的HybridNet模型用于高光谱图像分类。该模型通过CNN提取局部特征后,使用Transformer捕获全局依赖关系,最后通过分类器完成分类。文章详细介绍了模型结构设计思路,包括卷积层、Transformer编码器和分类器的实现细节,并提供了完整的PyTorch代码实现。在数据处理部分,介绍了高光谱数据的加载、标准化和PCA降维预处理流程,最终将数据调整为适合模型输入的格式。原创 2025-08-08 16:18:03 · 731 阅读 · 0 评论 -
机器学习入门基础 | 基于python的高光谱图像特征挖掘:PCA + 形态学属性处理可视化实战
本文介绍了一种基于PCA和形态学操作的高光谱图像特征提取方法。通过主成分分析降低数据维度,再运用面积开闭操作增强空间结构特征,有效去除噪声并填补孔洞。实验采用WHU-HI-HanChuan数据集,提供完整的Python实现代码,包括数据加载、PCA降维、形态学处理及结果可视化等步骤。该方法能够显著改善图像质量,为后续分类和变化检测任务提供更好的特征输入。实验结果表明,不同阈值的形态学处理能呈现不同程度的空间结构增强效果,对区域生长、分割和聚类等应用具有重要价值。原创 2025-08-08 16:14:36 · 942 阅读 · 0 评论 -
基于Phython利用CatBoost与PCA解析高光谱图像分类:WHU-HI-HanChuan数据集实战教程
本文以武汉大学WHU-Hi-HanChuan高光谱遥感数据集为例,提出了一套完整的遥感分类流程。首先采用PCA对274个波段降维至30维(保留99%以上信息),然后构建CatBoost分类模型,在测试集上取得较高准确率。研究重点包括:1)通过主成分特征重要性分析识别关键光谱特征;2)利用网格搜索评估参数敏感性;3)实现全图分类可视化。结果展示了CatBoost在高光谱分类中的优势,并提供了特征可解释性分析。代码开源,包含数据预处理、降维、建模、评估全流程,可作为高光谱遥感分类的入门教程。原创 2025-08-07 15:10:47 · 967 阅读 · 0 评论 -
利用 Python + t-SNE 可视化高光谱遥感影像特征分布:WHU-HI-HanChuan 案例实战
本文基于武汉大学WHU-Hi-HanChuan高光谱遥感数据集,演示了使用PCA、LLE和t-SNE降维算法进行遥感影像特征可视化的方法。文章详细介绍了数据预处理、随机采样、特征提取(PCA和LLE)及t-SNE降维的完整Python实现流程,并对比了不同降维方法的可视化效果。结果表明,t-SNE能有效展示高光谱数据的聚类趋势和类别边界,为遥感影像分析提供了直观的特征分布可视化工具。文末还建议了UMAP、AutoEncoder等进阶研究方向。原创 2025-08-07 15:06:51 · 808 阅读 · 0 评论 -
基于LightGBM的高光谱图像分类与可视化:完整教程与代码讲解
本文介绍了使用LightGBM模型对WHU-Hi-HanChuan高光谱遥感图像进行分类的完整流程。文章首先说明了数据集的来源和特点,然后详细讲解了从数据加载、预处理到模型训练的全过程代码实现。通过将三维高光谱图像展开为二维数组,筛选有标签样本,使用LightGBM分类器进行训练,最终实现了整幅图像的像素级预测和结果可视化。实验结果表明该方法能有效区分不同地物类别,为高光谱图像分类任务提供了可复现的解决方案。文章特别注重代码逐段解析,适合初学者学习和实践。原创 2025-08-06 00:55:26 · 1274 阅读 · 0 评论 -
图神经网络与 Transformer 多模型对比实战:从数据处理到结果分析全流程
在机器学习与深度学习领域,模型的选择与对比是优化算法性能的关键环节。本文将基于 Python 和 PyTorch 框架,结合torch_geometric库,详细展示图卷积网络(GCN)、图注意力网络(GAT)、视觉 Transformer(ViT)以及混合模型(Hybrid)的完整实现过程。从数据加载、模型定义、训练评估到结果保存,每一步都提供可复用的代码,适合算法研究、学术论文写作和工程实践参考。数据参考(注意:直接用链接中的数据替换):https://download.csdn.net/dow原创 2025-04-27 15:33:56 · 1113 阅读 · 0 评论 -
基于图卷积网络(GCN)的分类任务实战:从数据加载到结果分析
图神经网络(GNN)在处理具有图结构的数据时表现出色,其中图卷积网络(GCN)是最经典的模型之一。本文将结合实际代码,详细介绍如何使用 GCN 进行分类任务,涵盖数据加载、图结构构建、模型定义、训练评估及结果保存全流程,适合对图学习感兴趣的科研人员和开发者参考。 资源链接如下:https://download.csdn.net/download/lestatlu/90690594请大家关注支持一下!原创 2025-04-25 17:09:15 · 1287 阅读 · 0 评论 -
基于 EfficientFormer 的模型训练与评估:从数据处理到结果保存
这篇博客介绍了基于 EfficientFormer 的模型训练与评估全流程,从选择计算设备,到加载预处理数据(含构建图结构),接着定义模型类,其含轻量化 Patch Embedding、高效 Transformer 编码层和分类头。通过训练评估函数进行模型训练与多指标评估,主流程中训练多个模型并保存结果,最后统计评估指标并保存至 Excel,展示完整实践过程。原创 2025-04-25 00:03:36 · 1117 阅读 · 0 评论
分享