GEE数据介绍系列
文章平均质量分 92
遥感AI实战
公众号:遥感AI实战,211博士
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
遥感数据(GEE平台)介绍及简单可视化(七)|基于GLCF的Landsat全球内陆水体数据集的提取、分类与面积统计分析
本研究基于GLCF/GLS_WATER全球内陆水体数据集,利用Google Earth Engine平台对中国东部典型湖泊群区(长江中下游、太湖、洞庭湖等)进行水体分类与面积分析。研究内容包括可视化水体分布、计算水体面积、剔除云与云影干扰,并与MODIS NDWI数据进行对比验证。结果显示,该方法能有效提取2000年研究区水体信息,为历史水文研究提供基础数据支持。该技术方案可拓展应用于水体变化监测、深度学习模型训练及城市扩张对水体影响评估等研究领域。原创 2025-08-06 00:56:16 · 765 阅读 · 0 评论 -
遥感数据(GEE平台)介绍及简单可视化(六)|基于GHSL的城市非住宅建设用地识别与空间分析
摘要:本文基于GHSL发布的10米分辨率全球建筑用地数据,利用Google Earth Engine平台,对上海市2018年非住宅建设用地进行提取与分析。研究展示了高分辨率遥感数据在城市功能区识别中的技术路径,包括数据加载、可视化渲染和空间统计等关键步骤。该方法可扩展应用于城市扩张监测、热岛效应评估等城市规划与生态研究领域,为城市空间治理提供数据支撑。案例表明,GHSL数据结合GEE平台能有效支持全球尺度下统一标准的城市建筑分析。原创 2025-08-05 02:18:55 · 1139 阅读 · 0 评论 -
遥感数据(GEE平台)介绍及简单可视化(五)|基于EC JRC 2020全球森林覆盖图与MODIS NDVI的森林健康动态监测
本研究利用Google Earth Engine平台,结合EC JRC全球森林覆盖图(2020年V2版)和MODIS NDVI数据,对东南亚地区(100°E-110°E,5°S-10°N)的森林健康进行动态监测。通过10米分辨率森林覆盖数据精准划定森林范围,结合2023年500米分辨率NDVI数据评估植被活力,并识别NDVI<4000的潜在退化区域。该方法实现了森林分布与健康状况的快速可视化评估,为区域森林资源管理提供技术支持。原创 2025-08-03 23:19:31 · 770 阅读 · 0 评论 -
遥感数据(GEE平台)介绍及简单可视化(三)|Dynamic World助力城市水体变化与建设用地扩张联合监测
本文基于Google Dynamic World高分辨率遥感数据集,提出了广州城市水体与建设用地变化的自动化监测方法。通过2022年1月和12月的10米分辨率地表分类数据,实现了水体净损失、新增建设用地和水体转建设用地三类变化的自动提取与空间可视化。案例展示了GEE平台的代码实现流程,包括多时相数据合成、变化类型掩膜分析和面积统计计算,为城市生态保护与空间扩张监管提供了量化依据。原创 2025-07-28 18:34:06 · 1570 阅读 · 0 评论 -
城市绿地覆盖度自动化分析与可视化——基于Landsat 8卫星与GEE平台
本研究基于Google Earth Engine平台,利用Landsat 8遥感数据,开发了一套城市绿地覆盖度自动化分析系统。通过NDVI和EVI植被指数计算,结合分段模型反演植被覆盖度,实现0-100%的定量评估。系统将绿地覆盖度分为五级(无/极少至高覆盖),并完成面积统计、空间可视化及与地表温度的相关性分析。结果表明,该方法具有高精度、自动化和可扩展性优势,可用于城市生态评估、热岛效应研究等领域,为城市精细化管理和生态文明建设提供技术支持。未来可扩展多时相监测与多源数据融合分析。原创 2025-07-24 01:09:59 · 903 阅读 · 0 评论 -
遥感数据(GEE平台)介绍及简单可视化(一)|开篇:欧洲土地覆盖与城市扩张时序分析
本系列文章介绍Google Earth Engine(GEE)平台在土地利用/覆盖(LULC)研究中的应用,重点解析Copernicus CORINE Land Cover数据集。该数据集包含1990-2018年欧洲39国的5期100米分辨率数据,共44个土地覆盖类别。文章以意大利为例,演示了GEE加载、可视化、多期城市用地提取及面积统计的完整流程,包括代码实现和时空变化分析。该方法为城市扩张研究提供了高效工具,后续将介绍更多全球LULC数据应用。原创 2025-07-23 12:52:55 · 1295 阅读 · 0 评论
分享